3
01
Greatest Common Divisors
Given two natural numbers, and , the greatest common divisor may be found using
Euclid’s algorithm.
A
simplified explanation is given below:
1.
Let and be two natural numbers.
2.
Let be the remainder after dividing by .
3.
If
, set
and
and return to 2.
4.
If =
0
, then is the greatest common divisor.
Program
Lbl 1:?→ A:?→ B:B > A ⇒ Goto 1:Lbl 2:A - B → A:A ≧ B
⇒ Goto 2:A =0⇒ Goto 3:A → C:B → A:C → B:Goto 2:Lbl
3:B <
60 STEP
>
Execution Example:
Find the greatest common divisor of 210 and 60.
A
B
Greatest common divisor
A
B
A B
>
(
)
C
A
B
C
0
≠
B
A
→
C
B
→
C
B
ON
MODE
MODE
MODE
1
PRGM
MODE
1
COMP
1
P1
Prog
1
S A
D R
P1
P1 P2 P3 P4
G
210
EXE
S A
D R
P1
P1 P2 P3 P4
G
60
EXE
S A
D R
P1
P1 P2 P3 P4
G
関数電卓事例集
.book 3
ページ
2002年9月2日 月曜日 午後6時51分
Содержание 3950P
Страница 1: ......
Страница 46: ...MEMO MEMO MEMO MEMO...
Страница 47: ...Authors Dr Yuichi Takeda Research and Development Initiative Chuo University...
Страница 48: ......