33
23
Complex numbers and polar coordinates
As an example, for the complex number
,
we may write in polar coordinates, by letting
=
where .
The product of two complex numbers in polar form is
.
Program
?→ A:?→ B:√(A
2
+ B
2
)→ X:cos
-1
(A ÷ X)→ Y:X
Y <
31 STEP
>
INPUT A : real part
a
B : imaginary part
b
OUTPUT X : the distance from the origin
Y : the angle
from the real line
Execution Example:
, when written in polar coordinates is
.
To obtain the answer in degrees, press
before
executing the program.
ω
a bi
+
=
ω
ω
r
θ
cos
i
θ
sin
+
(
)
a + bi
θ
r
r
a
2
b
2
+
θ
cos
a
r
---
=
θ
sin
b
r
---
=
,
,
=
r
θ
cos
i
θ
sin
+
(
)
r
′
θ
cos
i
θ
′
sin
+
(
)
×
rr
′
θ θ′
+
(
)
cos
i
θ θ′
+
(
)
sin
+
(
)
=
θ
ω
2 2
i
+
=
ω
2 2
π
4
---
cos
i
π
4
---
sin
+
=
MODE
MODE
MODE
MODE
2
Rad
Prog
1
S A
D
R
P1
P1 P2 P3 P4
G
2
EXE
2
EXE
Disp
S A
D
R
P1
P1
P1
P1 P2 P3 P4
G
8
EXE
S A
D
R
P1
P1 P2 P3 P4
G
MODE
MODE
MODE
MODE
1
関数電卓事例集
.book 33
ページ
2002年9月2日 月曜日 午後6時51分
Содержание 3950P
Страница 1: ......
Страница 46: ...MEMO MEMO MEMO MEMO...
Страница 47: ...Authors Dr Yuichi Takeda Research and Development Initiative Chuo University...
Страница 48: ......