Power Supply Calculations
Calculating the System Current Draw
128
IQ-301 PN 50036:F 10/29/2001
A.4 Calculating the System Current Draw
A.4.1 Overview
The control panel must be able to power all internal and external devices continuously
during the non-fire alarm condition. To calculate the non-fire alarm load on the system
power supply when primary power is applied, use Calculation Column 1 in Table 47.
The control panel must support a larger load current during a fire alarm condition. To
calculate the fire alarm load on the power supply, use Calculation Column 2 in Table
47. The secondary power source (batteries) must be able to power the system during a
primary power loss. To calculate the non-fire alarm load on the secondary power
source, use Calculation Column 3 in Table 47.
When calculating current draw and the battery size, note the following:
•
“Primary” refers to the main power source for the control panel.
•
“Secondary” refers to the control panel's backup batteries.
•
All currents are given in amperes (A). Table 46 shows how to convert
milliamperes and microamperes to full amperes.
Table 46 Converting to Full Amperes
A.4.2 How to Use Table 47 to Calculate System Current
Draws
Use Table 47 to calculate current draws as follows.
1. Enter the quantity of devices in all three columns.
2. Enter the current draw where required. Refer to the Notifier Device Compatibility
Document for compatible devices and their current draw.
3. Calculate the current draws for each in all columns.
4. Sum the total current for each column.
5. Copy the totals from column 2 and column 3 to Table 48 on page 131.
Figure 128 shows the types of current that you enter into Table 47:
Figure 128 Calculating the System Current Draws
To convert....
Multiply
Example
Milliamperes (mA) to
amperes (A)
mA x 0.001
3 mA x 0.001= 0.003 A
Microamperes (µA) to
amperes (A)
µA x 0.000001
300 µA x 0.000001= 0.0003 A
Calculation Column 2
– The primary supply current load that the
control panel must support during a fire alarm condition, with AC
power applied. This current draw cannot exceed 5 A.
Calculation Column 1
– The primary supply current load that the control panel
must support during a non-fire alarm condition, with AC power applied. This current
draw cannot exceed 1.0 A.
Calculation Column 3
– the standby current drawn
from the batteries in a non-fire alarm condition during a
loss of AC power.
R
o
w
R
o
w
R
o
w
R
o
w
C
a
t
e
g
o
r
y
C
a
t
e
g
o
r
y
C
a
t
e
g
o
r
y
C
a
t
e
g
o
r
y
C
a
l
c
u
l
a
t
i
o
n
C
o
l
u
m
n
1
C
a
l
c
u
l
a
t
i
o
n
C
o
l
u
m
n
1
C
a
l
c
u
l
a
t
i
o
n
C
o
l
u
m
n
1
C
a
l
c
u
l
a
t
i
o
n
C
o
l
u
m
n
1
P
r
i
m
a
r
y
,
N
o
n
-
F
i
r
e
A
l
a
r
m
P
r
i
m
a
r
y
N
o
n
-
F
i
r
e
A
l
a
r
m
P
r
i
m
a
r
y
N
o
n
-
F
i
r
e
A
l
a
r
m
P
r
i
m
a
r
y
,
N
o
n
-
F
i
r
e
A
l
a
r
m
C
a
l
c
u
l
a
t
i
o
n
C
o
l
C
a
l
c
u
l
a
t
i
o
n
C
o
l
u
C
a
l
c
u
l
a
t
i
o
n
C
o
l
C
a
l
c
u
l
a
t
i
o
n
C
o
l
u
P
r
i
m
a
r
y
,
F
i
r
e
A
l
P
r
i
m
a
r
y
F
i
r
e
A
l
P
r
i
m
a
r
y
F
i
r
e
A
l
P
r
i
m
a
r
y
,
F
i
r
e
A
l
(
a
m
p
s
)
(
a
m
p
s
)
(
a
m
p
s
)
(
a
m
p
s
)
C
a
l
c
u
l
a
t
C
a
l
c
u
l
a
t
C
a
l
c
u
l
a
t
C
a
l
c
u
l
a
t
S
e
c
o
n
d
a
S
e
c
o
n
d
a
S
e
c
o
n
d
a
S
e
c
o
n
d
a
Q
t
y
X
[
c
u
r
r
e
n
t
d
r
a
w
]
=
t
o
t
a
l
Q
t
y
X
[
c
u
r
r
e
n
t
d
r
a
w
t
o
t
a
l
Q
t
y
X
[
c
u
r
r
t
o
t
a
1
B
a
s
i
c
S
y
s
t
e
m
N
/
A
N
/
A
N
/
A N
/
A
N
/
A
N
/
A1
x
[
0
.
1
0
0
.
1
2
A
V
P
S
-
2
4
[
]
x
[
0
.
0
0
3
H
i
g
h
r
i
p
p
l
e
p
o
w
e
r
T
B
1
t
e
r
m
i
n
a
l
s
1
a
n
d
2
N
o
t
i
f
i
c
a
t
i
o
n
a
p
p
l
i
a
n
c
e
s
v
i
a
C
M
X
N
o
t
i
f
i
c
a
t
i
o
n
a
p
p
l
i
a
n
c
e
s
v
i
a
C
M
X
R
e
l
e
a
s
i
n
g
d
e
v
i
c
e
s
v
i
a
C
M
X
O
t
h
e
r
c
o
m
p
a
t
i
b
l
e
d
e
v
i
c
e
s
(
N
o
t
e
1
)
N
/
A
N
/
A
N
/
A
[
]
N
/
A
N
/
A
N
/
A
x
[
]
=
N
/
A
N
/
A
N
/
A
[
]
[
]
[
]
[
]
x
[
]
=
x
[
]
=
x
[
]
=
x
[
]
=
N
/
A
N
/
A
N
/
A
[
]
N
/
A
N
/
A
N
/
A
x
[
N
/
N
/
N
/
4
N
o
n
-
r
e
s
e
t
t
a
b
l
e
p
o
w
e
r
T
B
1
t
e
r
m
i
n
a
l
s
3
a
n
d
4
A
F
M
-
1
6
A
T
/
A
F
M
-
3
2
A
S
e
r
i
e
s
A
C
M
-
1
6
A
T
/
A
C
M
-
3
2
A
S
e
r
i
e
s
A
E
M
-
1
6
A
T
/
A
E
M
-
3
2
A
S
e
r
i
e
s
A
F
M
-
1
6
A
L
C
D
-
8
0
,
L
C
D
-
8
0
T
M
(
N
o
t
e
2
)
A
C
M
-
8
R
(
r
e
f
e
r
t
o
D
o
c
.
1
5
3
4
2
)
L
D
M
(
r
e
f
e
r
t
o
D
o
c
.
1
5
8
8
5
)
U
D
A
C
T
C
o
m
m
u
n
i
c
a
t
o
r
O
t
h
e
r
c
o
m
p
a
t
i
b
l
e
d
e
v
i
c
e
s
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
x
[
0
.
0
4
0
]
=
x
[
0
.
0
4
0
]
=
x
[
0
.
0
0
2
]
=
x
[
0
.
0
2
5
]
=
x
[
0
.
1
0
0
]
=
x
[
]
=
x
[
]
=
x
[
0
.
0
4
0
]
=
x
[
]
=
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
x
[
0
.
0
5
6
]
=
x
[
0
.
0
5
6
]
=
x
[
0
.
0
1
8
]
=
x
[
0
.
0
6
5
]
=
x
[
0
.
1
0
0
]
=
x
[
]
=
x
[
]
=
x
[
0
.
1
0
0
]
=
x
[
]
=
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
x
[
0
.
0
4
x
[
0
.
0
4
x
[
0
.
0
0
x
[
0
.
0
2
x
[
0
.
0
5
x
[
x
[
x
[
0
.
0
4
x
[
5
R
e
s
e
t
t
a
b
l
e
P
o
w
e
r
F
o
u
r
-
w
i
r
e
s
m
o
k
e
d
e
t
e
c
t
o
r
T
w
o
-
w
i
r
e
s
m
o
k
e
d
e
t
e
c
t
o
r
c
o
n
n
e
c
t
e
d
t
o
M
M
X
-
2
A
7
7
-
7
1
6
B
R
e
l
a
y
O
t
h
e
r
c
o
m
p
a
t
i
b
l
e
d
e
v
i
c
e
s
(
N
o
t
e
1
)
[
]
[
]
[
]
[
]
x
[
]
=
x
[
]
=
x
[
0
.
0
2
0
]
=
x
[
]
=
[
]
[
]
[
]
[
]
x
[
]
=
x
[
]
=
x
[
0
.
0
2
0
]
=
x
[
]
=
[
]
[
]
[
]
[
]
x
[
x
[
x
[
0
.
0
2
x
[
6
N
A
C
#
1
(
N
o
t
e
1
)
T
B
2
t
e
r
m
i
n
a
l
s
1
a
n
d
2
N
o
t
i
f
i
c
a
t
i
o
n
A
p
p
l
i
a
n
c
e
R
e
l
e
a
s
i
n
g
S
o
l
e
n
o
i
d
[
]
[
]
x
[
]
=
x
[
]
=
7
N
A
C
#
2
(
N
o
t
e
1
)
T
B
2
t
e
r
m
i
n
a
l
s
3
a
n
d
4
N
o
t
i
f
i
c
a
t
i
o
n
A
p
p
l
i
a
n
c
e
R
e
l
e
a
s
i
n
g
S
o
l
e
n
o
i
d
[
]
[
]
x
[
]
=
x
[
]
=
8
N
A
C
#
3
(
N
o
t
e
s
1
a
n
d
3
)
T
B
2
t
e
r
m
6
N
o
t
i
f
i
c
a
t
i
o
n
A
p
p
l
i
a
n
c
e
R
e
l
e
a
s
i
n
g
S
o
l
e
n
o
i
d
[
]
[
]
x
[
]
=
x
[
]
=
9
N
A
C
#
4
(
N
o
t
e
s
1
a
n
d
3
)
T
B
2
t
e
r
m
i
n
a
l
s
7
a
n
d
8
N
o
t
i
f
i
c
a
t
i
o
n
A
p
p
l
i
a
n
c
e
R
e
l
e
a
s
i
n
g
S
o
l
e
n
o
i
d
[
]
[
]
x
[
]
=
x
[
]
=
1
0 S
L
C
C
o
m
m
u
n
i
c
a
t
i
o
n
L
o
o
p
T
B
6
t
e
r
m
i
n
a
l
s
3
–
6
S
D
X
-
5
5
1
,
C
P
X
-
5
5
1
,
C
P
X
-
7
5
1
&
F
D
X
-
5
5
1
,
S
D
X
-
5
5
1
T
H
S
D
X
-
7
5
1
M
M
X
-
1
,
M
M
X
-
1
0
1
,
B
G
X
-
1
0
1
L
C
M
X
M
M
X
-
2
(
s
e
e
D
o
c
.
M
5
0
0
-
0
3
-
0
0
)
B
6
0
1
B
H
B
5
0
1
B
H
(
H
o
r
n
i
n
b
a
s
e
)
D
H
X
-
5
0
1
,
D
H
X
-
5
0
2
(
s
e
e
d
a
t
a
s
h
I
S
O
-
X
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
x
[
0
.
0
0
0
2
0
]
=
x
[
0
.
0
0
0
2
9
=
x
[
0
.
0
0
0
3
0
]
=
x
[
0
.
0
0
0
3
0
]
=
x
[
]
=
x
[
0
.
0
0
1
0
0
]
=
x
[
0
.
0
0
1
0
0
]
=
x
[
]
=
x
[
0
.
0
0
0
4
5
]
=
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
x
[
0
.
0
0
0
2
0
]
=
x
[
0
.
0
0
0
2
9
]
=
x
[
0
.
0
0
0
4
3
]
=
x
[
0
.
0
0
0
3
0
]
=
x
[
]
=
x
[
0
.
0
0
1
0
0
]
=
x
[
0
.
0
1
5
0
0
]
=
x
[
]
=
x
[
0
.
0
0
0
4
5
]
=
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
[
]
x
[
0
.
0
0
x
[
0
.
0
0
x
[
0
.
0
0
x
[
0
.
0
0
x
[
x
[
0
.
0
0
x
[
0
.
0
0
x
[
x
[
0
.
0
0
1
1 O
p
t
i
o
n
a
l
m
o
d
u
l
e
s
R
T
M
-
8
(
N
o
t
e
4
)
4
X
T
M
M
u
n
i
c
i
p
a
l
B
o
x
(
N
o
t
e
5
)
R
e
v
e
r
s
e
P
o
l
a
r
i
t
y
O
u
t
p
u
t
s
u
s
e
d
[
]
[
]
[
]
x
[
0
.
0
0
1
0
]
=
x
[
0
.
0
1
1
0
]
=
N
/
A
x
[
0
.
0
0
5
0
]
=
[
]
[
]
[
]
[
]
x
[
0
.
1
6
0
]
=
x
[
0
.
0
2
0
]
=
x
[
]
=
x
[
0
.
0
0
5
0
]
=
[
]
[
]
[
]
x
[
0
.
0
x
[
0
.
0
N
/
A
x
[
0
.
0
1
2 S
u
m
e
a
c
h
c
o
l
u
m
n
f
o
r
t
o
t
a
l
s
P
r
i
m
a
r
y
n
o
n
-
a
l
a
r
m
:
P
r
i
m
a
r
y
n
o
n
-
a
l
a
r
m
:
P
r
i
m
a
r
y
n
o
n
-
a
l
a
r
m
:
P
r
i
m
a
r
y
n
o
n
-
a
l
a
r
m
:
(
1
. 0
A
m
a
x
.
)
:
(
1
. 0
A
m
a
x
.
)
:
(
1
. 0
A
m
a
x
.
)
:
(
1
. 0
A
m
a
x
.
)
:
P
r
i
m
a
r
y
a
l
a
r
m
P
r
i
m
a
r
y
a
l
a
r
m
P
r
i
m
a
r
y
a
l
a
r
m
P
r
i
m
a
r
y
a
l
a
r
m
(
5
. 0
A
m
a
x
)
:
(
5
. 0
A
m
a
x
)
:
(
5
. 0
A
m
a
x
)
:
(
5
. 0
A
m
a
x
)
:
C
o
p
y
t
o
T
a
b
l
e
A
-
A
l
a
r
m
L
o
a
d
"
S
e
c
o
n
d
a
S
e
c
o
n
d
a
S
e
c
o
n
d
a
S
e
c
o
n
d
a
C
o
p
y
t
o
"
S
e
c
o
n
d
a
S
t
a
n
d
b
y
Содержание AUTOPULSE IQ-301
Страница 195: ...IQ 301 PN 50036 F 10 29 2001 195...