AD1849K
REV. 0
–9–
On input, 8-bit companded data is expanded to an internal
linear representation, according to whether
µ
-law or A-law was
specified in the Codec’s internal registers. Note that when
µ
-law
compressed data is expanded to a linear format, it requires 14
bits. A-law data expanded requires 13 bits, see Figure 1.
3/2
2/1
15
0
15
0
MSB
MSB
0 0 0 / 0 0
15
0
MSB
DAC INPUT
EXPANSION
COMPRESSED
INPUT DATA
3/2
2/1
LSB
LSB
8 7
LSB
Figure 1. A-Law or
µ
-Law Expansion
When 8-bit companding is specified, the ADCs’ linear output is
compressed to the format specified prior to output. See Figure 2.
Note that all format conversions take place at input or output.
Internally, the AD1849K always uses 16-bit linear PCM
representations to maintain maximum precision.
LSB
3/2
2/1
15
0
15
0
MSB
MSB
0 0 0 0 0 0 0 0
15
0
MSB
ADC OUTPUT
TRUNCATION
COMPRESSION
LSB
8 7
LSB
Figure 2. A-Law or
µ
-Law Compression
Power Supplies and Voltage Reference
The AD1849K operates from +5 V power supplies. Independent
analog and digital supplies are recommended for optimal
performance, though excellent results can be obtained in single
supply systems. A voltage reference is included on the Codec
and its 2.25 V buffered output is available on an external pin
(CMOUT). The CMOUT output can be used for biasing op
amps used in dc coupling. The internal reference is externally
bypassed to analog ground at the V
REF
pin. Note that V
REF
should only be connected to its bypass capacitors.
Autocalibration
The AD1849K supports an autocalibration sequence to eliminate
DAC and ADC offsets. The autocalibration sequence is
initiated in the transition from Control Mode to Data Mode,
regardless of the state of the AC bit. The user should specify
that analog outputs be muted to prevent undesired outputs.
Monitor mix will be automatically disabled by the Codec.
During the autocalibration sequence, the serial data output from
the ADCs is meaningless and the ADI bit is asserted. Serial data
inputs to the DACs are ignored. Even if the user specified the
muting of all analog outputs, near the end of the autocalibration
sequence, dc analog outputs very close to CMOUT will be
produced at the line outputs and mono speaker output.
An autocalibration sequence is also performed when the
AD1849K leaves the reset state (i.e.,
RESET
goes HI). The
RESET
pin should be held LO for 50 ms after power up or after
leaving power-down mode to delay the onset of the autocalibration
sequence until after the voltage reference has settled.
Loopback
Digital and analog loopback modes are supported for device and
system testing. The monitor mix datapath is always available for
loopback test purposes. Additional loopback tests are enabled by
setting the ENL bit (Control Word Bit 33) to a “1.”
Analog loopback mode D-A-D is enabled by setting the ADL
bit (Control Word Bit 32) to a “1” when ENL is a “1.” In this
mode, the DACs’ analog outputs are re-input to the PGAs prior
to the ADCs, allowing digital inputs to be compared to digital
outputs. The monitor mix will be automatically disabled by the
Codec during D-A-D loopback. The analog outputs can be
individually attenuated, and the analog inputs are internally
disconnected. Note that muting the line 0 output mutes the
looped-back signal in this mode.
Digital loopback mode D-D is enabled by resetting the ADL bit
(Control Word Bit 32) to a “0” when ENL is a “1.” In this
mode, the control and data bit pattern presented on the SDRX
pin is echoed on the SDTX pin with a two frame delay, allowing
the host controller to verify the integrity of the serial interface
starting on the third frame after D-D loopback is enabled.
During digital loopback mode, the output DACs are
operational.