838
C
HAPTER
62: ACL O
VERVIEW
Whenever the step changes, the rules are renumbered. Continuing with the above
example, if you change the step from 5 to 2, the rules are renumbered 0, 2, 4, 6,
and so on.
Benefits of using the step
With the step and rule numbering/renumbering mechanism, you do not need to
assign rules numbers when defining them. The system will assign a newly defined
rule a number that is the smallest multiple of the step bigger than the currently
biggest number. For example, with a step of five, if the biggest number is currently
28, the newly defined rule will get a number of 30. If the ACL has no rule defined
already, the first defined rule will get a number of 0.
Another benefit of using the step is that it allows you to insert new rules between
existing ones as needed. For example, after creating four rules numbered 0, 5, 10,
and 15 in an ACL with a step of five, you can insert a rule numbered 1.
Effective Period of an
IPv4 ACL
You can control when a rule can take effect by referencing a time range in the
rule.
A referenced time range can be one that has not been created yet. The rule,
however, can take effect only after the time range is defined and comes active.
IP Fragments Filtering
with IPv4 ACL
Traditional packet filtering performs match operation on, rather than all IP
fragments, the first ones only. All subsequent non-first fragments are handled in
the way the first fragments are handled. This causes security risk as attackers may
fabricate non-first fragments to attack your network.
As for the configuration of a rule of an IPv4 ACL, the
fragment
keyword specifies
that the rule applies to non-first fragment packets only, and does not apply to
non-fragment packets or the first fragment packets. ACL rules that do not contain
this keyword is applicable to both non-fragment packets and fragment packets.
Introduction to IPv6
ACL
This section covers these topics:
■
“IPv6 ACL Classification” on page 838
■
“IPv6 ACL Naming” on page 839
■
“IPv6 ACL Match Order” on page 839
■
“IPv6 ACL Step” on page 840
■
“Effective Period of an IPv6 ACL” on page 840
IPv6 ACL Classification
IPv6 ACLs, identified by ACL numbers, fall into three categories, as show in
Table 64.
Table 64
IPv6 ACL categories
Category ACL
number
Matching
criteria
Basic IPv6 ACL
2000 to 2999 Source IPv6 address
Advanced IPv6 ACL 3000 to 3999 Source IPv6 address, destination IPv6 address, protocol
carried on IPv6, and other Layer 3 or Layer 4 protocol
header fields
Содержание 4800G Series
Страница 26: ...26 CHAPTER NETWORKING APPLICATIONS ...
Страница 30: ...30 CHAPTER 1 LOGGING IN TO AN ETHERNET SWITCH ...
Страница 62: ...62 CHAPTER 3 LOGGING IN THROUGH TELNET ...
Страница 70: ...70 CHAPTER 5 LOGGING IN THROUGH WEB BASED NETWORK MANAGEMENT SYSTEM ...
Страница 72: ...72 CHAPTER 6 LOGGING IN THROUGH NMS ...
Страница 82: ...82 CHAPTER 8 CONTROLLING LOGIN USERS ...
Страница 98: ...98 CHAPTER 9 VLAN CONFIGURATION ...
Страница 108: ...108 CHAPTER 10 VOICE VLAN CONFIGURATION ...
Страница 119: ...GVRP Configuration Examples 119 DeviceB display vlan dynamic No dynamic vlans exist ...
Страница 120: ...120 CHAPTER 11 GVRP CONFIGURATION ...
Страница 160: ...160 CHAPTER 17 PORT ISOLATION CONFIGURATION ...
Страница 172: ...172 CHAPTER 19 LINK AGGREGATION CONFIGURATION ...
Страница 196: ...196 CHAPTER 22 DLDP CONFIGURATION ...
Страница 240: ...240 CHAPTER 23 MSTP CONFIGURATION ...
Страница 272: ...272 CHAPTER 27 RIP CONFIGURATION ...
Страница 364: ...364 CHAPTER 29 IS IS CONFIGURATION ...
Страница 426: ...426 CHAPTER 31 ROUTING POLICY CONFIGURATION ...
Страница 442: ...442 CHAPTER 33 IPV6 RIPNG CONFIGURATION ...
Страница 466: ...466 CHAPTER 35 IPV6 IS IS CONFIGURATION ...
Страница 488: ...488 CHAPTER 36 IPV6 BGP CONFIGURATION ...
Страница 498: ...498 CHAPTER 37 ROUTING POLICY CONFIGURATION ...
Страница 540: ...540 CHAPTER 40 TUNNELING CONFIGURATION ...
Страница 552: ...552 CHAPTER 41 MULTICAST OVERVIEW ...
Страница 604: ...604 CHAPTER 43 MLD SNOOPING CONFIGURATION ...
Страница 628: ...628 CHAPTER 46 IGMP CONFIGURATION ...
Страница 699: ...Troubleshooting MSDP 699 4 Verify that the C BSR address is different from the anycast RP address ...
Страница 700: ...700 CHAPTER 48 MSDP CONFIGURATION ...
Страница 812: ...812 CHAPTER 57 DHCP SERVER CONFIGURATION ...
Страница 822: ...822 CHAPTER 58 DHCP RELAY AGENT CONFIGURATION ...
Страница 834: ...834 CHAPTER 61 BOOTP CLIENT CONFIGURATION ...
Страница 850: ...850 CHAPTER 63 IPV4 ACL CONFIGURATION ...
Страница 856: ...856 CHAPTER 64 IPV6 ACL CONFIGURATION ...
Страница 860: ...860 CHAPTER 65 QOS OVERVIEW ...
Страница 868: ...868 CHAPTER 66 TRAFFIC CLASSIFICATION TP AND LR CONFIGURATION ...
Страница 888: ...888 CHAPTER 69 PRIORITY MAPPING ...
Страница 894: ...894 CHAPTER 71 TRAFFIC MIRRORING CONFIGURATION ...
Страница 904: ...904 CHAPTER 72 PORT MIRRORING CONFIGURATION ...
Страница 930: ...930 CHAPTER 74 UDP HELPER CONFIGURATION ...
Страница 990: ...990 CHAPTER 79 FILE SYSTEM MANAGEMENT CONFIGURATION ...
Страница 1000: ...1000 CHAPTER 80 FTP CONFIGURATION ...
Страница 1020: ...1020 CHAPTER 82 INFORMATION CENTER CONFIGURATION ...
Страница 1038: ...1038 CHAPTER 84 SYSTEM MAINTAINING AND DEBUGGING ...
Страница 1046: ...1046 CHAPTER 85 DEVICE MANAGEMENT ...
Страница 1129: ...SSH Client Configuration Examples 1129 SwitchB ...
Страница 1130: ...1130 CHAPTER 88 SSH CONFIGURATION ...
Страница 1160: ...1160 CHAPTER 90 RRPP CONFIGURATION ...
Страница 1180: ...1180 CHAPTER 91 PORT SECURITY CONFIGURATION ...
Страница 1192: ...1192 CHAPTER 92 LLDP CONFIGURATION ...
Страница 1202: ...1202 CHAPTER 93 POE CONFIGURATION ...
Страница 1218: ...1218 CHAPTER 96 HTTPS CONFIGURATION ...