Trio CS-1560AII Instruction Manual Download Page 3

F E A T U R E S 

* Vertical axis of low input capacitance (22 ±3pF) for  2 -

channel operation provides high sensitivity and wide 
band-width (10mV/div, 15MHz). 

* High sensitivity CRT with excellent beam permeability 

has sufficient brightness for measurements of fast speed 

pulses of high frequencies. 

* The high voltage power for CRT as well as the power for 

other circuits is fully stabilized because of the use of DC-

DC converter, thus the sensitivity and brightness are 

completely free from effects of voltage variations. 

*  X - Y operation is possible with CH2 amplifier used as X 

axis. 

The horizontal axis sensitivity is as high as 10mV/div, 

permitting accurate calibrations. 

* Time base switch allows changeover between CHOP and 

ALT and between V(vertical) and H(horizontal) of TV sync 

separator circuit, automatically and electronically. 

* CH1 and CH2 can be individually synchronized (internal 

syncronization). 

* At AUTO position of TRIG LEVEL, it is possible to check 

the brightness at no-signal time and to adjust triggering 

level of input waveforms. 

* Mode selector switch is provided for measurements of 

sum and difference between 2 channels. 

* Low power consumption (23W) for cool operation. 

* All component parts are cleverly mounted on circuit 

boards for improved reliability. 

* Trace rotation system for easy adjustment of horisontal 

trace. 

* The adoption of IC's throughout circuitry assures high 

performance and improved reliability. 

S P E C I F I C A T I O N S 

Cathode Ray Tube 

Type:

 130BXB31  o r C 5 3 5 P 3 1 B 

Accelerating voltage: 2kV 

Scale:

 8 div x 10div(1 div = 1 cm) 

Vertical Amplifiers

 (CH1

 and CH2) 

Deflection Factor:

 10 mV/div~20V/div, 

1-2-5 sequence (1  d i v = 1 cm) 

Precisely adjustable between 

all ranges. 

Sensitivity error between 
ranges is ±5%. 

Input Impedance:

 1 MO  ± 5 % 

Input Capacitance:

 22pF ±3pF 

Frequency Response:

 DC DC - 15MHz (less than 

- 3 d B ) 

AC 2Hz - 15MHz (less than 

- 3 d B ) 

Rising Time:

 Less than 23 nsec. 

Over-shoot:

 Less than  3 % 

(at 100kHz square wave) 

Cross-talk:

 Better than 70dB at 1 kHz 

Operating Modes:

 CH1 Channel 1 only 

CH2 Channel 2 only 

DUAL Dual trace (CHOP and 

ALT are automatically 

selected by  S W E E P 

TIME/DIV) 0.5Ms/div 

~ 0 . 5 m s / d i v 

ALT (alternate sweep) 

1 ms/div~0.5s/div. 

CHOP (200 kHz 

switching) 

ADD Algebraic sum of CH1 

and CH2. 

S U B Algebraic difference 

of CH 1 and CH2. 

C H O P Frequency:

 200kHz  ± 2 0 % 

Maximum Input 

Voltage: 600Vp-p or 300V (DC +  A C 

peak) 

S w e e p Circuit (Common to  C H 1 and  C H 2 ) 

Sweep System:

 Triggered and automatic. In 

automatic mode, sweep is ob-
tained without input signal. 

S w e e p Time:

 0.5/zs/div ~ 0.5s/div  ± 5 % and 

"X-Y", 1-2-5 sequence Fine 

adjustment between all 19 ranges 

S w e e p Magnification:

 Obtained by enlarging the above 

sweep 5 times (±5%) from 
center. 

Linearity:

 Less than  3 % (2yus/div ~ 

0.5s/div) 

Less than  5 % 

(0.5(us/div ~ 1/us/div) 

Triggering 

Source:

 CH 1. CH2 and EXT 

Slope:

 NORM - positive and negative 

TV- positive and negative 
(TVH and TVV are automatically 

switched by  S W E E P TIME/DIV) 

TVH (TV - Line): 

0.5jus/div ~ 50Ms/div 

TVV (TV - Field): 

0.1ms/div ~ 0.5s/div 

Triggering Voltage:

 CH 1 and CH2 Amplitude on 

CRT screen, more than 0.5div 
EXT More than 1Vp-p 

Triggering Range:

 20Hz ~ 1 5MHz 

Summary of Contents for CS-1560AII

Page 1: ...TRIGGERED SWEEP OSCILLOSCOPE H I G H S T A B I L I T Y C S 1 5 6 0 A I I DUAL TRACE OSCILLOSCOPE INSTRUCTION M A N U A L T R I O...

Page 2: ...NELS 4 Front Panel 4 Rear Panel 4 OPERATION 7 Preliminary operation 7 Operating Procedures 7 APPLICATIONS 8 Dual trace Applications 8 Single channel Applications 17 FM Receiver Adjustments 19 X Y Appl...

Page 3: ...C A T I O N S 2 Cathode Ray Tube Type 130BXB31 orC535P31B Accelerating voltage 2kV Scale 8 div x 10div 1 div 1 cm Vertical Amplifiers CH1 and CH2 Deflection Factor 10 mV div 20V div 1 2 5 sequence 1...

Page 4: ...Calibrating Voltage WP p 5 1kHz square wave Intensity Modulation Input Voltage More than 20Vp p Input impedance 470kfi 2 0 Trace Rotation More than 20Vp p Input Impedance 470kfl 2 0 Trace Rotation Tr...

Page 5: ...4 CONTROLS ON PANELS FRONT PANEL REAR PANEL...

Page 6: ...y about 200 kHz signal CHOP operation In the range of 0 5ms div to 0 5 s div the input signals to both channels are alternately switch ed for each sweep ALT operation ADD The waveforms from both chann...

Page 7: ...signal is applied with fly back line displayed on CRT With trigger signal trigger sweep is effected where sync level is adjustable When the sync level exceeds the limit the sweep is set in free runni...

Page 8: ...21 set to CH 1 the CH 1 input signal from the Input terminal 3 is fed to the synchro circuit where the CH1 signal is synchro nized Similarly when SOURCE is set to CH2 the CH2 signal is synchronized Us...

Page 9: ...3C the divide by two output waveform is shown which occurs during the falling time of pulses In this case the putput waveform is shifted with respect to the leading edge of the reference frequency pu...

Page 10: ...equency dividers as previously described but waveforms are often time related in many other combinations Fig 5 shows a typical digital circuit and identifies several of the points at which waveform me...

Page 11: ...Fig 5 Typical digital circuit using several time related waveforms 10...

Page 12: ...an amplifier Fig 7 shows the testing of a circuit using a triangular wave such as is found in the limiter circuit of a transmitter modulator The measurement may be made us ing any type of signal merel...

Page 13: ...l knobs are the same as those in Fig 4 The waveform A is the reference waveform and is applied to CH1 input All other waveforms are sampled at CH2 and compared to the reference waveform of CH1 The bur...

Page 14: ...illoscope can be efficiently used to localize the defect With an identical signal applied to the inputs of both amplifiers a side by side comparison of both units can be made by progressively sampling...

Page 15: ...can be performed using single trace operation These are outlined later in the application section covering single trace operation One of these procedures viewing the multi burst signal in the VITS ver...

Page 16: ...followed by line 279 and line 18 is followed by line 280 The entire VITS appears at the bottom of the vertical blanking pulse and just before the first line of the video signal Each of the multi burs...

Page 17: ...eo detector or other desired test point in the video section of the television receiver 4 Set the SYNC switch as follows A If the sync and blanking pulses of the observed video signal are positive use...

Page 18: ...loscope is an indispensable in strument It provides a visual display of the absence or presence of normal signals This method signal tracing may be used to trace a signal by measuring several points i...

Page 19: ...gative limiting in IF overload conditions are shown in Fig 19 18 V E R T I C A L S Y N C P U L S E V E R T I C A L B L A N K I N G I F A M P V I D E O A M P To set up the oscilloscope for viewing comp...

Page 20: ...ove the probe to the demodulator output The S curve should be displayed and the 10 7MHz pip should appear in the center see Fig 20B Adjust the demodulator according to the manufac turer s instructions...

Page 21: ...ed 2 Set the signal generator output for the normal operating level of the circuit being tested Observe the circuit s output on the oscilloscope and if the test cir cuit is overdriven the sine wave di...

Page 22: ...a square wave contains a lat number of odd harmonics By injecting a 500Hz sine wave into an amplifier we can evaluate amplifier response at 500Hz only but by injecting a square wave of the same frequ...

Page 23: ...A Y A D J U S T V E R T GAIN F O R C O N V E N I E N T VIEWING H E I G H T I N P U T A M P L I F I E R C I R C U I T BEING T E S T E D O U T P U T Fig 25 Equipment set up for square wave testing of a...

Page 24: ...at the top of the leading edge of the square wave because of over compensation at the frequencies of more than 10kHz As a rule of thumb it can be safely said that a square wave can be used to reveal...

Page 25: ...acterized by a change in shape of the flat portion of the square wave Fig 28B shows a high frequency overshoot produced by rising amplifier response at high frequencies It should again be noted that t...

Page 26: ...uced as indicated in Fig 35 Fig 36 summarizes the preceding explanations and serves as a handy reference Fig 35 Effect of high frequency boost and good damping Frequency distortion amplitude reduction...

Page 27: ...e input for EXT TRIG is up to 50V DC AC peak and the input to Z AXIS is up to 50V DC A C peak 4 Do not increase the brightness of the CRT un necessarily 5 Do not leave the oscilloscope for a long peri...

Page 28: ...39 Adjust TC302 so that the brightness at the sweep starting point is the same as the brightness at other points SWEEP TIME DIV in 0 5 u position Finally adjust the spot with FOCUS and ASTIG 5 CRT tra...

Page 29: ...ical center position adjust VR206 POS ADJ so that the waveform starts at the left end of the scale 2 X POSITION adjustment To adjust the horizontal position of the waveform when the S W E E P TIME DIV...

Page 30: ...S C H E M A T I C D I A G R A M 29...

Page 31: ...A p r o d u c t of TRIO KENWOOD CORPORATION 17 5 2 chome Shibuya Shibuya ku Tokyo 150 Japan 15208 PRINTED IN JAPAN B50 2888 00 G...

Reviews: