background image

Introduction

www.ti.com

4

SLUUBS3A – October 2017 – Revised January 2018

Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

UCC28056EVM-296 Evaluation Module

ADVANCE INFORMATION

1

Introduction

The purpose of the UCC28056EVM-296 (EVM) is to aid in evaluation of the UCC28056 transition mode
boost PFC converter. The EVM is a stand-alone PFC converter designed to operate with 85 to 265 V

RMS

,

47 to 63 Hz, AC input and up to 165-W DC output from 90 VAC to 265 VAC and 140 W at 85 VAC. The
EVM can be used as it is delivered without additional work, to evaluate a transition mode boost PFC
converter. This user’s guide provides basic evaluation instruction from a viewpoint of system operation of
a stand-alone PFC boost power converter.

2

Description

2.1

Typical Applications

This EVM is used in the following applications:

AC adapter front end

Set top box

Desktop computing

Gaming

Electronic lamp ballast

Digital TV

Entry-level server and web server

2.2

Features

This EVM has the following features:

Unified algorithm for working in critical mode (CRM) and discontinuous conduction mode (DCM) with a
high power factor across the entire operating range

AC input voltage from 85 to 265 V

RMS

AC line frequency from 47 to 63 Hz

Up to 165-W output power

High efficiency

TM, DCM control gives improved light-load efficiency

Burst mode for reduced standby consumption

Non-linear gain gives improved transient response

User-adjustable valley switching

Robust full-featured protection including overtemperature protection, brown-out protection, output
overvoltage, cycle-by-cycle overcurrent, and gross overcurrent protections

Test points to facilitate device and topology evaluation

Summary of Contents for UCC28056EVM-296

Page 1: ...Test Setup 6 2 Efficiency 9 3 Load Regulation vs Output Power 10 4 Line Regulation vs Input Voltage 10 5 Power Factor vs Output Power 11 6 THD vs Output Power 11 7 85 VAC Startup No Load 11 8 85 VAC Startup Full Load 11 9 115 VAC Startup No Load 11 10 115 VAC Startup Full Load 11 11 230 VAC Startup No Load 11 12 230 VAC Startup Full Load 11 13 265 VAC Startup No Load 12 14 265 VAC Startup Full Loa...

Page 2: ...orporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION 27 UCC28056EVM 296 Bottom Copper Assembly Drawing Top view 20 List of Tables 1 EVM Performance Specification 5 2 Test Points 7 3 List of Terminals 7 4 Total Standby Power 9 5 Bill of Materials 21 Trademarks All trademarks are the property of their respective owners ...

Page 3: ... area where the TI HV EVM and its interface electronics are energized indicating operation of accessible high voltages may be present for the purpose of protecting inadvertent access 4 All interface circuits power supplies evaluation modules instruments meters scopes and other related apparatus used in a development environment exceeding 50Vrms 75VDC must be electrically located within a protected...

Page 4: ...er converter 2 Description 2 1 Typical Applications This EVM is used in the following applications AC adapter front end Set top box Desktop computing Gaming Electronic lamp ballast Digital TV Entry level server and web server 2 2 Features This EVM has the following features Unified algorithm for working in critical mode CRM and discontinuous conduction mode DCM with a high power factor across the ...

Page 5: ...st Setup 4 1 Test Equipment DC Voltage Source External DC input for VCC The DC source should be capable of supplying 12 V and up to 100 mA AC Voltage Source Capable of single phase output AC voltage 85 to 265 VAC 47 to 63 Hz adjustable with minimum power rating 200 W and current limit function The AC voltage source to be used should meet IEC60950 reinforced insulation requirement DC Digital Multim...

Page 6: ...VM 296 Evaluation Module ADVANCE INFORMATION 4 2 Recommended Test Setup Figure 1 illustrates the recommended test setup Figure 1 UCC28056EVM 296 Recommended Test Setup WARNING High voltages that may cause injury exist on this evaluation module EVM Please ensure all safety procedures are followed when working on this EVM Never leave a powered EVM unattended ...

Page 7: ...inal Name Description J1 AC Input 3 pin AC power input 85 V 265 V J3 I_IND Inductor current sense J8 RVCC 2 pin DC power input 12 V typical J9 VOUT 4 pin output voltage terminal 390 V typical 7 Test Procedure Use the following steps for the test procedure 1 Refer to Figure 1 for basic setup The required equipment for this measurement is listed in Table 2 2 Before making electrical connections visu...

Page 8: ...to either constant current mode or constant resistance mode The load range is from 0 to 423 mA 7 If the load does not have a current or a power display TI recommends inserting a current meter between the output voltage and the electronic load 8 Connect a voltage meter to TP16 and TP17 to monitor the output voltage 9 Turn on the AC voltage source output 10 Turn on the DC source output 7 1 Equipment...

Page 9: ...erformance Data and Typical Characteristic Curves 8 1 Standby Power Table 4 lists the total standby power measurement The electronic load is physically disconnected from J9 for this test The average input power is measured at VI and external VCC over a 5 minute interval Table 4 Total Standby Power Input Voltage VRMS Input Power mW VCC Voltage V VCC Current µA Total Standby Power mW 85 23 12 00743 ...

Page 10: ... Performance Data and Typical Characteristic Curves www ti com 10 SLUUBS3A October 2017 Revised January 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION 8 3 Load Regulation Figure 3 illustrates the load regulation versus output power graph Figure 3 Load Regulation vs Output Power 8 4 Line Regulation Figure 4...

Page 11: ... Copyright 2017 2018 Texas Instruments Incorporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION 8 5 Power Factor Figure 5 illustrates the power factor versus output power graph Figure 5 Power Factor vs Output Power 8 6 THD Figure 6 illustrates the THD versus output power graph Figure 6 THD vs Output Power 8 7 Startup The following waveforms show the output voltage behavior when the line ...

Page 12: ...ation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION Figure 7 85 VAC Startup No Load Figure 8 85 VAC Startup Full Load Figure 9 115 VAC Startup No Load Figure 10 115 VAC Startup Full Load Figure 11 230 VAC Startup No Load Figure 12 230 VAC Startup Full Load ...

Page 13: ...ck Copyright 2017 2018 Texas Instruments Incorporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION Figure 13 265 VAC Startup No Load Figure 14 265 VAC Startup Full Load 8 8 Line Voltage and Line Current Figure 15 and Figure 16 illustrate the low and high line voltage and current waveforms Figure 15 Low Line Voltage and Current ...

Page 14: ...Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION Figure 16 High Line Voltage and Current 8 9 Valley Switching The following waveforms shows drain to source voltage of the MOSFET and the valley switching action on the EVM Figure 17 85 VAC Valley Switching 50 mA Load ...

Page 15: ...UUBS3A October 2017 Revised January 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION Figure 18 115 VAC Valley Switching 50 mA Load Figure 19 230 VAC Valley Switching 100 mA Load ...

Page 16: ...anuary 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION Figure 20 265 VAC Valley Switching 100 mA Load 8 10 Voltage Stress Q1 Figure 21 illustrates the voltage stress Q1 waveform Figure 21 Q1 Max Vds Stress ...

Page 17: ...October 2017 Revised January 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION 8 11 Voltage Stress D4 Figure 22 illustrates the voltage stress D4 waveform Figure 22 D4 Max Voltage Stress ...

Page 18: ...E 85VRMS 265VRMS 47Hz 63Hz OUTPUT VOLTAGE 390VDC nominal MAXIMUM OUTPUT POWER 165W VOUT DRV 5 COMP 6 GND 4 VOSNS 1 ZCD CS 2 VCC 3 U1 UCC28056DBV 3 0k R12 36 5k R18 120k R19 75k R20 390k R21 TP11 TP7 TP8 3300pF C10 0 R13 0 033µF C7 1µF C8 180k R1 J6 TP9 10pF C9 82 5k R4 24 3k R8 600V D2 RTN VOUT VEE GND 0 47µF C18 0 33µF C1 0 33µF C2 470pF C11 4 70 ohm t RT1 Copyright 2018 Texas Instruments Incorpo...

Page 19: ...ion Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION 9 2 Assembly Drawing Figure 24 through Figure 27 illustrate the EVM assembly drawings Figure 24 UCC28056EVM 296 Top Assembly Drawing Top view Figure 25 UCC28056EVM 296 Bottom Layer Assembly Drawing Top view ...

Page 20: ... Revised January 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC28056EVM 296 Evaluation Module ADVANCE INFORMATION Figure 26 UCC28056EVM 296 Top Copper Assembly Drawing Top view Figure 27 UCC28056EVM 296 Bottom Copper Assembly Drawing Top view ...

Page 21: ... 5 A 250VAC VDC TH TR5 fuse 8 5mm DIA 37215000001 H1 H4 H6 H8 4 HEX STANDOFF 6 32 NYLON 1 1 2 HEX STANDOFF 6 32 NYLON 1 1 2 inch 4824 H2 H5 H7 H9 4 Standoff Hex 0 5 L 6 32 Nylon 6 32 HEX Nylon standoff 0 500 mil 1903C H3 1 Custom HeatSink 120x42x10mm HeatSink 120x42x10mm FL12 013 120x42 H10 H11 H12 3 MACHINE SCREW PAN PHILLIPS 5 16 4 40 PMSSS 440 0031 PH H13 H14 H15 3 Washer Split Lock 4 4693 H16 ...

Page 22: ... 4 70 ohm Thermistor NTC 4 70 ohm 20 8 5mm Disc 8 5mm Disc B57153S0479M000 RV1 1 VARISTOR 490V 1 2KA DISC 7MM Dia 7mm V300LA2P SIL1 1 Silcon Thermal Pad 24x21 mm SP900S 0 009 00 114 TP1 TP3 TP9 TP12 TP15 TP16 6 Test Point Multipurpose Red TH Red Multipurpose Testpoint 5010 TP2 TP4 TP5 TP10 TP11 5 Test Point Multipurpose White TH White Multipurpose Testpoint 5012 TP6 TP7 TP8 TP13 TP14 TP17 6 Test P...

Page 23: ...y set forth above or credit User s account for such EVM TI s liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty If TI elects to repair or replace such EVM TI shall have a reasonable time to repair such EVM or provide replacements Repaired EVMs shall be warr...

Page 24: ...the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated Antenna types not included in this list having a gain greater than the maximum gain indicated for that type are strictly prohibited for use with this device Concernant les EVMs avec antennes détachables Conformément à la réglementation d Industrie Canada le présent émetteur radio peut fo...

Page 25: ...ed loads Any loads applied outside of the specified output range may also result in unintended and or inaccurate operation and or possible permanent damage to the EVM and or interface electronics Please consult the EVM user guide prior to connecting any load to the EVM output If there is uncertainty as to the load specification please contact a TI field representative During normal operation even ...

Page 26: ...COST OF REMOVAL OR REINSTALLATION ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES RETESTING OUTSIDE COMPUTER TIME LABOR COSTS LOSS OF GOODWILL LOSS OF PROFITS LOSS OF SAVINGS LOSS OF USE LOSS OF DATA OR BUSINESS INTERRUPTION NO CLAIM SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE 12 MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED 8 2 Specif...

Page 27: ... TI Resource NO OTHER LICENSE EXPRESS OR IMPLIED BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN including but not limited to any patent right copyright mask work right or other intellectual property right relating to any combination machine or process in which TI product...

Reviews: