background image

MSP430F42x
MIXED SIGNAL MICROCONTROLLER

SLAS421A − APRIL 2004 − REVISED JUNE 2007

38

POST OFFICE BOX 655303 

 DALLAS, TEXAS 75265

APPLICATION INFORMATION

JTAG fuse check mode

MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity
of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check
current, I

TF

, of 1.8 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be

taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the
TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check
mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the
fuse check mode has the potential to be activated.

The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see
Figure 14). Therefore, the additional current flow can be prevented by holding the TMS pin high (default
condition).

The JTAG pins are terminated internally, and therefore do not require external termination.

Time TMS Goes Low After POR

TMS

I

TF

I

TDI/TCLK

Figure 14. Fuse Check Mode Current, MSP430F42x

Summary of Contents for MSP430F42 series

Page 1: ...in portable measurement applications The device features a powerful 16 bit RISC CPU 16 bit registers and constant generators that contribute to maximum code efficiency The digitally controlled oscilla...

Page 2: ...TACLK ACLK S28 P2 3 SVSIN P2 4 UTXD0 P2 5 URXD0 RST NMI TCK TMS TDI TCLK TDO TDI P1 0 TA0 P1 1 TA0 MCLK P1 2 TA1 S31 P1 3 SVSOUT S30 P1 4 S29 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20...

Page 3: ...I P1 Flash 32KB 16KB 8KB RAM 1KB 512B 256B Watchdog WDT 15 16 Bit Timer_A3 3 CC Reg Port 1 8 I O Interrupt Capability POR SVS Brownout Basic Timer 1 1 Interrupt Vector LCD 128 Segments 1 2 3 4 MUX fLC...

Page 4: ...gital I O slave transmit enable USART0 SPI mode S0 12 O LCD segment output 0 S1 13 O LCD segment output 1 S2 14 O LCD segment output 2 S3 15 O LCD segment output 3 S4 16 O LCD segment output 4 S5 17 O...

Page 5: ...S31 51 I O General purpose digital I O Timer_A Capture CCI1A CCI1B input Compare Out1 output LCD segment output 31 See Note 1 P1 1 TA0 MCLK 52 I O General purpose digital I O Timer_A Capture CCI0B in...

Page 6: ...CPU clock Four of the registers R0 to R3 are dedicated as program counter stack pointer status register and constant generator respectively The remaining registers are general purpose registers Perip...

Page 7: ...ve D Low power mode 0 LPM0 CPU is disabled ACLK and SMCLK remain active MCLK is available to modules FLL loop control remains active D Low power mode 1 LPM1 CPU is disabled ACLK and SMCLK remain activ...

Page 8: ...SD16OVIFG SD16CCTLx SD16IFG see Notes 1 and 2 Maskable 0FFF8h 12 0FFF6h 11 Watchdog Timer WDTIFG Maskable 0FFF4h 10 USART0 Receive URXIFG0 Maskable 0FFF2h 9 USART0 Transmit UTXIFG0 Maskable 0FFF0h 8...

Page 9: ...s configured in interval timer mode OFIE Oscillator fault interrupt enable NMIIE Nonmaskable interrupt enable ACCVIE Flash access violation interrupt enable URXIE0 USART0 UART and SPI receive interrup...

Page 10: ...16KB 0FFFFh 0FFE0h 0FFFFh 0C000h 32KB 0FFFFh 0FFE0h 0FFFFh 08000h Information memory Size 256 Byte 010FFh 01000h 256 Byte 010FFh 01000h 256 Byte 010FFh 01000h Boot memory Size 1kB 0FFFh 0C00h 1kB 0FFF...

Page 11: ...Segments A and B can be erased individually or as a group with segments 0 n Segments A and B are also called information memory D New devices may have some bytes programmed in the information memory n...

Page 12: ...ff The supply voltage supervisor SVS circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision the device is automatically reset and supp...

Page 13: ...CCI0A 53 P1 0 52 P1 1 TA0 CCI0B CCR0 TA0 DVSS GND CCR0 TA0 DVCC VCC 51 P1 2 TA1 CCI1A 51 P1 2 51 P1 2 TA1 CCI1B CCR1 TA1 DVSS GND CCR1 TA1 DVCC VCC 45 P2 0 TA2 CCI2A 45 P2 0 ACLK internal CCI2B CCR2...

Page 14: ...t high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed accumulate operand1 MACS 0136h Multiply accumulate operand1 MAC 0134h Multiply signed operand1 MPYS 0132h M...

Page 15: ...Reserved 0BCh Reserved 0BDh Reserved 0BEh Reserved 0BFh LCD LCD memory 20 LCDM20 0A4h LCD memory 16 LCDM16 0A0h LCD memory 15 LCDM15 09Fh LCD memory 1 LCDM1 091h LCD control and mode LCDCTL 090h USAR...

Page 16: ...flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt edge select P1I...

Page 17: ...N 1 VCC AVCC DVCC VCC see Note 1 and Note 2 MSP430F42x 2 0 3 6 V Supply voltage during program execution SD16 enabled or during programming of flash memory VCC AVCC DVCC VCC MSP430F42x 2 7 3 6 V Suppl...

Page 18: ...5 2 0 I Low power mode LPM3 see Note 2 TA 25 C V 3 V 1 6 2 1 A I LPM3 Low power mode LPM3 see Note 2 TA 60 C VCC 3 V 1 7 2 2 A TA 85 C 2 0 2 6 TA 40 C 0 1 0 5 I LPM4 Low power mode LPM4 see Note 2 TA...

Page 19: ...ycles leakage current see Note 1 PARAMETER TEST CONDITIONS MIN NOM MAX UNIT Ilkg P1 x Leakage Port P1 Port 1 V P1 x see Note 2 V 3 V 50 nA Ilkg P2 x Leakage current Port P2 Port 2 V P2 x see Note 2 VC...

Page 20: ...VOL Low Level Output Voltage V 0 10 20 30 40 50 0 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 VCC 3 V P2 1 TYPICAL LOW LEVEL OUTPUT CURRENT vs LOW LEVEL OUTPUT VOLTAGE TA 25 C TA 85 C OL I Typical Low level Output...

Page 21: ...RT0 see Note 1 PARAMETER TEST CONDITIONS MIN NOM MAX UNIT t USART0 deglitch time VCC 3 V SYNC 0 UART mode 150 280 500 ns NOTE 1 The signal applied to the USART0 receive signal terminal URXD0 should me...

Page 22: ...POR Brownout Reset BOR vs Supply Voltage V CC drop V 0 0 5 1 1 5 2 0 001 1 1000 V 3 V Typical Conditions 1 ns 1 ns tpw Pulse Width s tpw Pulse Width s cc VCC 3 V VCC drop tpw Figure 7 VCC drop Level W...

Page 23: ...ge applied on P2 3 VLD 15 4 4 10 4 mV VLD 1 1 8 1 9 2 05 VLD 2 1 94 2 1 2 25 VLD 3 2 05 2 2 2 37 VLD 4 2 14 2 3 2 48 VLD 5 2 24 2 4 2 6 VLD 6 2 33 2 5 2 71 VCC dt 3 V s see Figure 9 VLD 7 2 46 2 65 2...

Page 24: ...0 SVS is Active Undefined 0 1 Brownout 0 1 0 1 Set POR Brownout Region SVS Circuit is Active From VLD to VCC V B_IT SVS out Vhys SVS_IT Vhys B_IT td BOR td SVSon td SVSR td BOR SVS_IT Figure 9 SVS Re...

Page 25: ...COPLUS 1 3 V 1 3 2 2 3 5 MHz f DCO 27 FN_8 FN_4 0 FN_3 1 FN_2 x DCOPLUS 1 3 V 10 3 17 9 28 5 MHz f DCO 2 FN_8 0 FN_4 1 FN_3 FN_2 x DCOPLUS 1 3 V 2 1 3 4 5 2 MHz f DCO 27 FN_8 0 FN_4 1 FN_3 FN_2 x DCOP...

Page 26: ...CO Tap S n Stepsize Ratio between DCO Taps Min Max 1 07 1 06 Figure 12 DCO Tap Step Size DCO Frequency Adjusted by Bits 29 to 25 in SCFI1 N DCO FN_2 0 FN_3 0 FN_4 0 FN_8 0 FN_2 1 FN_3 0 FN_4 0 FN_8 0...

Page 27: ...is CXIN x CXOUT CXIN CXOUT It is independent of XTS_FLL 2 To improve EMI on the low power LFXT1 oscillator particularly in the LF mode 32 kHz the following guidelines must be observed Keep as short a...

Page 28: ...bled 3 V 0 5 MHz SD16 analog input range see Note 1 PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT SD16GAINx 1 SD16REFON 1 500 Differential input SD16GAINx 2 SD16REFON 1 250 V Differential input volta...

Page 29: ...V 0 2 FSR EOS Offset error SD16GAINx 32 3 V 1 5 FSR dE dT Offset error temperature SD16GAINx 1 3 V 4 20 ppm dEOS dT temperature coefficient SD16GAINx 32 3 V 20 100 ppm FSR _C CMRR Common mode SD16GAIN...

Page 30: ...ejection VREF VCC SD16REFON 1 SD16VMIDON 0 VCC 2 5 V to 3 6 V 200 V V NOTES 1 There is no capacitance required on VREF However a capacitance of at least 100nF is recommended to reduce any reference vo...

Page 31: ...64 byte flash block This parameter applies to all programming methods individual word byte write and block write modes 2 The mass erase duration generated by the flash timing generator is at least 11...

Page 32: ...Interrupt Edge Select P1IES x P1SEL x P1IE x P1IFG x P1IRQ x EN Set Q 0 1 1 0 Pad Logic 0 Input 1 Output Bus keeper CAPD x PnSEL x PnDIR x Direction From Module PnOUT x Module X OUT PnIN x PnIE x PnIF...

Page 33: ...EL 2 P1DIR 2 P1OUT 2 P1IN 2 P1IE 2 P1IFG 2 P1IES 2 P1SEL 3 P1DIR 3 P1OUT 3 P1IN 3 P1IE 3 P1IFG 3 P1IES 3 P1SEL 4 P1DIR 4 P1OUT 4 P1IN 4 P1IE 4 P1IFG 4 P1IES 4 P1SEL 5 P1DIR 5 P1OUT 5 P1IN 5 P1IE 5 P1I...

Page 34: ...1 1 0 PnSel x PnDIR x Dir Control from module PnOUT x Module X OUT PnIN x PnIE x PnIFG x PnIES x Module X IN 0 Port active 1 Segment xx function active P2Sel 0 P2DIR 0 P2Sel 1 P2DIR 1 P2DIR 0 DCM_UCLK...

Page 35: ...Output Bus keeper CAPD x PnSEL x PnDIR x Direction From Module PnOUT x Module X OUT PnIN x PnIE x PnIFG x PnIES x Module X IN P2SEL 2 P2DIR 2 P2OUT 2 P2IN 2 P2IE 2 P2IFG 2 P2IES 2 P2SEL 3 P2DIR 3 P2OU...

Page 36: ...Control From Module P2DIR x P2SEL x Bus Keeper 0 1 0 Input 1 Output Node Is Reset With PUC PUC NOTE x Bit identifier 6 to 7 for port P2 without external pins P2Sel x P2DIR x DIRECTION CONTROL FROM MO...

Page 37: ...5265 APPLICATION INFORMATION JTAG pins TMS TCK TDI TCLK TDO TDI input output with Schmitt trigger or output TDI TDO TMS TDI TCLK TDO TDI Controlled by JTAG TCK TMS TCK DVCC Controlled by JTAG Test JTA...

Page 38: ...wer consumption Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up The second positive edge on the TMS...

Page 39: ...disabled SVS enabled and PORON 1 MIN value from 2 2 V to 2 0 V page 17 Clarified test conditions for I LPM0 in supply current into AVCC DVCC table page 18 Clarified test conditions in USART0 table pa...

Page 40: ...ces including the requirement that lead not exceed 0 1 by weight in homogeneous materials Where designed to be soldered at high temperatures TI Pb Free products are suitable for use in specified lead...

Page 41: ...3 NOM 0 25 0 45 0 75 Seating Plane 0 05 MIN Gage Plane 0 27 33 16 48 1 0 17 49 64 SQ SQ 10 20 11 80 12 20 9 80 7 50 TYP 1 60 MAX 1 45 1 35 0 08 0 50 M 0 08 0 7 NOTES A All linear dimensions are in mil...

Page 42: ...iness practice TI is not responsible or liable for any such statements TI products are not authorized for use in safety critical applications such as life support where a failure of the TI product wou...

Reviews: