Polski
3/8
ICEP007-030
Czasami temperatura wody na wyjściu wymaga wymieszania z glikolem
etylenowym, aby uniknąć powstawania lodu, w proporcjach procen-
towych podanych poniżej.
Temperatura wody
na wyjściu [°C]
Glikol etylenowy
(% vol.)
Temperatura
otoczenia
4
5
-2
2
10
-5
0
15
-7
-2
20
-10
-4
25
-12
-6
30
-15
3.3.3
Zbiornik wyrównawczy (Chiller do wody)
Aby uniknąć wzrostu lub zmniejszenia objętości płynu spowodowanych
zmianą jego temperatury, co mogłoby uszkodzić maszynę lub obwód,
zaleca się zainstalowanie zbiornika wyrównawczego o odpowiedniej
pojemności.
Zbiornik ekspansyjny powinien być podłączony przed pompą do tylne-
go gniazda zbiornika.
Aby obliczyć minimalną objętość zbiornika wyrównawczego, jaki trzeba
zastosować w obwodzie zamkniętym, można posłużyć się następującą
formułą:
V=2 x Vtot x (Pt min - P t max)
gdzie
Vtot= obj. całkowita obwodu (w litrach)
P t min/max= ciężar właściwy przy minimalnej/maksymalnej tempera-
turze osiąganej przez wodę [kg/dm3].
Wartości ciężaru właściwego zależnie od temperatury i procentu glikolu
są podane w tabeli.
%
glikolu
Temperatura [°C]
-10
0
10
20
30
40
50
0%
1.0024
1.0008
0.9988
0.9964
0.9936
0.9905
0.9869
10%
1.0177
1.0155
1.0130
1.0101
1.0067
1.0030
0.9989
20%
1.0330
1.0303
1.0272
1.0237
1.0199
1.0156
1.0110
30%
1.0483
1.0450
1.0414
1.0374
1.0330
1.0282
1.0230
!
Uwaga: Podczas napełniania zwrócić uwagę na dane
dotyczące napełniania również zbiornika wyrównawczego.
3.4 Obwód elektryczny
3.4.1
Kontrole i podłączenia
!
Przed przystąpieniem do jakichkolwiek czynności na częściach
elektrycznych upewnić się, czy nie są pod napięciem.
Wszystkie połączenia elektryczne muszą być zgodne z lokalnymi prze-
pisami w miejscu instalacji.
Kontrole wstępne
1) Napięcie i częstotliwość sieci muszą odpowiadać wartościom
odciśniętym na tabliczce znamionowej agregatu. Napięcie zasilania
nie może, nawet w krótkich okresach, przekraczać tolerancji podanej
na schemacie elektrycznym, która, jeśli nie podano inaczej, wynosi
+/- 10% dla napięcia; +/- 1% dla częstotliwości.
2) Napięcie musi być symetryczne (wartości składowych czynnych
napięć i kąty faz między sąsiednimi fazami równe między sobą).
Maksymalna dopuszczalna utrata równowagi między napięciami
wynosi 2%.
Podłączenie
1) Zasilanie elektryczne agregatów wykonywane jest kablem 4−
żyłowym, 3 buziemienie, bez zera. Przekrój minimalny kabla,
patrz paragraf 7.3.
2) Przewód powinien przejść przez docisk umieszczony z tyłu na
tylnym panelu urządzenia. Podłączyć fazę i zero do zacisków na
odłączniku głównym (QS), a uziemienie do zacisku uziemiającego
(PE).
3) Zapewnić na początku kabla zasilającego ochronę przed kontaktem
bezpośrednim co najmniej IP2X lub IPXXB.
4) Zainstalować, na linii zasilania elektrycznego chillera, auto-
matyczny wyłącznik różnicowy (RCCB - IDn = 0.3A), o obciążalności
maksymalnej podanej na odnośnym schemacie elektrycznym,
o zdolności wyłączania odpowiedniej do prądu zwarciowego
występującego na obszarze instalacji maszyny.
Nominalny prąd wejściowy (“In”) takiego wyłącznika magnetyczno-
termicznego musi być równy wartości FLA oraz krzywej zadziałania
typu D.
5) Maksymalna wartość oporu pozornego sieci = 0.274 ohm.
Kolejne kontrole
Upewnić się, czy maszyna i urządzenia pomocnicze zostały uziemione i
czy są chronione przed zwarciem i/lub przeciążeniami.
!
Po podłączeniu jednostki i zamknięciu wyłącznika glównego
przed maszyną (włączając w ten sposób zasilanie maszyny), napięcie
w obwodzie elektrycznym osiąga wartości niebezpieczne. Maksymalna
ostrożność!!
3.4.2 Alarm
ogólny
Wszystkie chillery posiadają sygnalizację alarmu maszyny (patrz
schemat elektryczny), którą tworzy wolny styk zwrotniczy wstawiony
do skrzynki zaciskowej: pozwala to na przyłączenie centralnego alarmu
zewnętrznego, dźwiękowego, wizualnego lub podłączonego do np.
PLC.
3.4.3
Zdalny wyłącznik ON/OFF
Wszystkie chillery mają możliwość zastosowania zdalnego sterowania
uruchamianiem i zatrzymaniem.
Podłączenie oddalonego przełącznika ON-OFF widoczne jest na sche-
macie elektrycznym.
3.5 Wersja chłodzona wodą (W)
Chillery w wersji z kondensacją wodną wymagają obwodu hydraulicz-
nego doprowadzającego zimną wodę do kondensatora.
Chłodziarkawwersjiwodnejwyposażonajestwzawór ciśnieniowy,
znajdujący się na wejściu do kondensatora, który ma za zadanie regulo-
wanie natężenia przepływu wody, zapewniając optymalną kondensację.
Kontrole wstępne
Jeśli zasilaniewodąkondensatora jestwykonane zapomocąobwodu
zamkniętego, przeprowadzić wszystkie kontrole wstępne wyszczegól-
nione dla głównego obwodu hydraulicznego (par. 3.3.1).
Podłączenie
1) Zaleca się wyposażenie obwodu wody kondensacyjnej w zawory
odcinające tak, by można było wyłączyć maszynę w przypadku
konserwacji.
2) Podłączyć rury doprowadzające/odprowadzające wodę do
odpowiednich przyłączy umieszczonych w tylnej części jednostki.
3) Jeśli woda kondensacyjna jest w obiegu otwartym, zaleca się
wyposażenie obwodu w fi ltr na wejściu kondensator tak, by
ograniczyć ryzyko zabrudzenia powierzchni.
4) Jeśli obwód jest typu zamkniętego, skontrolować, czy jest
prawidłowo wypełniony wodą i prawidłowo odpowietrzony.
Summary of Contents for Hyperchill Plus ICEP007
Page 2: ......
Page 148: ......
Page 174: ...Circuit Diagram ICEP020 024 water 25 ICEP007 030 ...
Page 175: ...Circuit Diagram ICEP020 024 water cond W 26 ICEP007 030 ...
Page 177: ...Circuit Diagram ICEP030 water 28 ICEP007 030 ...
Page 178: ...Circuit Diagram ICEP030 water cond W 29 ICEP007 030 ...
Page 180: ...7 7 Wiring diagram ICEP007 014 31 ICEP007 030 Sheet 2 12 ...
Page 181: ...7 7 Wiring diagram ICEP007 014 32 ICEP007 030 Sheet 2 12 Option fan speed control ...
Page 184: ...7 7 Wiring diagram ICEP007 014 35 ICEP007 030 Sheet 5 12 ...
Page 185: ...7 7 Wiring diagram ICEP007 014 36 ICEP007 030 Sheet 6 12 ...
Page 186: ...7 7 Wiring diagram ICEP007 014 37 ICEP007 030 Sheet 7 12 ...
Page 187: ...7 7 Wiring diagram ICEP007 014 38 ICEP007 030 Sheet 8 12 ...
Page 190: ...7 7 Wiring diagram ICEP007 014 41 ICEP007 030 Sheet 11 12 ...
Page 191: ...7 7 Wiring diagram ICEP007 014 42 ICEP007 030 Sheet 12 12 ...
Page 193: ...Wiring diagram ICEP020 024 44 ICEP007 030 Sheet 2 12 ...
Page 194: ...Wiring diagram ICEP020 024 45 ICEP007 030 Sheet 2 12 Option fan speed control ...
Page 197: ...Wiring diagram ICEP020 024 48 ICEP007 030 Sheet 5 12 ...
Page 198: ...Wiring diagram ICEP020 024 49 ICEP007 030 Sheet 6 12 Ĭ Ĭ Ĭ ...
Page 199: ...Wiring diagram ICEP020 024 50 ICEP007 030 Sheet 7 12 ...
Page 200: ...Wiring diagram ICEP020 024 51 ICEP007 030 Sheet 8 12 Ĭ ...
Page 203: ...Wiring diagram ICEP020 024 54 ICEP007 030 Sheet 11 12 ...
Page 204: ...Wiring diagram ICEP020 024 55 ICEP007 030 Sheet 12 12 ...
Page 205: ...Wiring diagram ICEP030 56 ICEP007 030 Sheet 1 12 ...
Page 206: ...Wiring diagram ICEP030 57 ICEP007 030 Sheet 2 12 ...
Page 207: ...Wiring diagram ICEP030 58 ICEP007 030 Sheet 3 12 ...
Page 208: ...Wiring diagram ICEP030 59 ICEP007 030 Sheet 4 12 ...
Page 209: ...Wiring diagram ICEP030 60 ICEP007 030 Sheet 5 12 ...
Page 210: ...Wiring diagram ICEP030 61 ICEP007 030 Sheet 6 12 ...
Page 211: ...Wiring diagram ICEP030 62 ICEP007 030 Sheet 7 12 ...
Page 212: ...Wiring diagram ICEP030 63 ICEP007 030 Sheet 8 12 ...
Page 213: ...Wiring diagram ICEP030 64 ICEP007 030 Sheet 9 12 ...
Page 214: ...Wiring diagram ICEP030 65 ICEP007 030 Sheet 10 12 ...
Page 215: ...Wiring diagram ICEP030 66 ICEP007 030 Sheet 11 12 ...
Page 216: ...Wiring diagram ICEP030 67 ICEP007 030 Sheet 12 12 ...
Page 217: ......