background image

5

 

 

SECTION  4 •

  

POWER REQUIREMENTS

 

 

The  low  impedance type

 

of  accelerometer  must  be  powered by  a constant 

current  power source.   Modern data acquisition  systems  (oscilloscopes, FFT 
analyzers, data collectors, etc.) often have this constant current power supply 
built in.

 

The power required to drive the accelerometer is typically 2-4 mA at either15 
or 24 volts.  Please refer to the specifications describing your particular model  
for  clarification  on its  power  requirements.  Further  note  that  all  OMEGA 
accelerometers  will  not  be  damaged  even  If  the  power  supply  provides 
constant  current  as high as10 mA  or voltage  as  high as 30  volts.  Incorrect 
powering may impede some of the operating characteristics such as dynamic 
range, temperature range and noise level.

 

 

You should take care not to exceed the 10 mA current limit. If a custom power 
supply  is used,  it  must  incorporate a 2 mA  constant current diode  in  series 
with the output to insure that the accelerometer Is not over-powered.

 

POWER SUPPLIES

 

 

If  the  data  acquisition  system  being used  does  not  incorporate  its  own 
power supply  then  a  separate  power  supply  must  be  used.  OMEGA 
manufactures single channel  and  multiple  channel accelerometer power 
supplies.

 

 

Low  impedance  accelerometers  do  not  require  much  power  and it is 
preferable  that a  very low  noise  regulated power supply be used.  For this 
reason, it is  often  appropriate to use a battery powered unit for powering the 
accelerometer.  The battery-powered  unit  offers  the  cleanest  (low  noise) 
characteristics and can be offered in either 

NiCad

 rechargeable  or disposable 

battery  pack versions. Regulated line power supplies are also available for 
these  applications where power must stay on for extended periods of  time. 
Please refer to the appropriate sales bulletins and operating manuals provided 
for each OMEGA power supply.  Figure 4-1 illustrates  how a  low impedance 
accelerometer should be connected to a constant current power supply. This 
schematic diagram shows the basic components within the accelerometer and 
power supply.

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4a. - Low  Impedance Accelerometer Interconnection

 

 

Summary of Contents for ACC101

Page 1: ...e mail info omega com For latest product manuals www omegamanual info Shop online at omega comSM User sGuide ACC101 ACC102A ACC103 ACC301A ACC310 ACC320 Accelerometers...

Page 2: ...rves the right to alter specifications without notice Servicing North America U S A Omega Engineering Inc Headquarters Toll Free 1 800 826 6342 USA Canada only Customer Service 1 800 622 2378 USA Cana...

Page 3: ...TS 5 Power Supplies 5 SECTION 5 CONNECTOR WIRING 7 Coaxial Connectors 7 Two Pin Connectors 7 Four Pin Connectors 7 SECTION 6 CABLING TECHNIQUES 8 Splicing and Extending Cables 8 Securing Cables 8 SECT...

Page 4: ...jj...

Page 5: ...pment inspect the container and equipment for any signs of damage Take particular note of any evidence of rough handling in transit Immediately report any damage to the shipping agent NOTE The carrier...

Page 6: ...r case The materials and physical construction used iIn an accelerometer design are selected to furnish the particular performance characteristics desired For more information about the construction o...

Page 7: ...will provide years of reliable trouble free service NOISE IN ACCELEROMETERS Electrical Grounding An accelerometer may be designed with the output signal ground either connected to the case of the acce...

Page 8: ...the accelerometer will transduce shock and vibration that is input normal to the accelerometer s mounting base It shouldbe noted that the accelerometer will have some sensitivity to motion in the othe...

Page 9: ...celerometer Is not over powered POWER SUPPLIES If the data acquisition system being used does not incorporate its own power supply then a separate power supply must be used OMEGA manufactures single c...

Page 10: ...ow Impedance Wiring Directly to Instrumentation For those applications where the data acquisition system does not supply the constant current power an external power supply must be used Essentially th...

Page 11: ...l connectors are wired The result Is that the two pins correspond to the center conductor and shield of a coaxial accelerometer The two pin configuration lends itself to be wired with either coaxial c...

Page 12: ...ypically low impedance devices are not affectedby sharp cable bends or cable motion Figure 6 1 Cable Routing and Securing SPLICING EXTENDING CABLES Common sense and care should be used when splicing a...

Page 13: ...or noise source Letting a connector which is signal common touch ground can cause ground loop noiseInterjection When working with permanently routed cable systems it is recommended that the splices be...

Page 14: ...have a mounting stud protruding from the bottom of the unit This stud may or may not be removable depending upon the model When attaching the accelerometer with the mounting stud you should make certa...

Page 15: ...s lend themselves to be adhesively bonded to an object Temporary bonds can be achieved with many different tacky adhesives beeswax or cyanoacrylate type cements such as Krazy Glue These types of bonds...

Page 16: ...ets are not generally recommended for measurements above 5KHz They are quite adequate for lower frequency measurements andcanbe helpfulwhen a single accelerometer is used to measure a great number of...

Page 17: ...13 Figure 7 3 Magnetic Mounting...

Page 18: ...g and 105mV g The actual sensitivity for each unit is verified at 100 Hz and recorded on the accelerometer s calibration certificate BASIC FREQUENCY RESPONSE The frequency response specification for...

Page 19: ...y 1 Temperature Range 10 to 200 F 20 to 95 C Transverse Sensitivity 5 Shock Limit 5 000 g pk Mounted Resonant Frequency 18 kHz Output Impedance 100 ohms Bias Voltage 12 VDC typ Base Strain 250 in in 0...

Page 20: ...0 to 200 F 20 to 95 C Transverse Sensitivity 5 Shock Limit 5 000 g pk Mounted Resonant Frequency 18 kHz Output Impedance 100 ohms Bias Voltage 12 VDC typ Base Strain 250 in in 001 g pk in in typ Noise...

Page 21: ...ity 2 Temperature Range 40 to 250 F 40 to 121 C Transverse Sensitivity 5 Shock Limit 5 000 g pk Mounted Resonant Frequency 50 kHz Output Impedance 1000 ohms Bias Voltage 7 VDC typ Base Strain 250 in i...

Page 22: ...e Range 40 to 250 F 40 to 121 C Transverse Sensitivity 5 Shock Limit 5 000 g pk Mounted Resonant Frequency 25 kHz typ Output Impedance 1000 ohms Bias Voltage 7 VDC typ Base Strain 250 in in 005 g pk i...

Page 23: ...ty 1 Temperature Range 40 to 250 F 40 to 121 C Transverse Sensitivity 5 Shock Limit 5 000 g pk Mounted Resonant Frequency 40 kHz Output Impedance 100 ohms Bias Voltage 12 VDC typ Base Strain 250 in in...

Page 24: ...Temperature Range 40 to 250 F 40 to 121 C Transverse Sensitivity 5 Shock Limit 5 000 g pk Mounted Resonant Frequency 18 kHz Output Impedance 100 ohms Bias Voltage 12 VDC typ Base Strain 250 in in 005...

Page 25: ...21 NOTES...

Page 26: ...therwise shall not exceed the purchase price of the component upon which liability is based In no event shall OMEGA be liable for consequential incidental or special damages CONDITIONS Equipment sold...

Page 27: ...ine Paddlewheel Systems M U Totalizers Batch Controllers pH CONDUCTIVITY M U pH Electrodes Testers Accessories M U Benchtop Laboratory Meters M U Controllers Calibrators Simulators Pumps M U Industria...

Reviews: