background image

2002 Sep 06

5

 

NXP Semiconductors

Product specification

MMIC wideband amplifier

BGM1012

APPLICATION INFORMATION

Figure shows a typical application circuit for the 
BGM1012 MMIC. The device is internally matched to 
50

, and therefore does not need any external matching. 

The value of the input and output DC blocking capacitors 
C2 and C3 should not be more than 100 pF for 
applications above 100 MHz. However, when the device is 
operated below 100 MHz, the capacitor value should be 
increased.

The nominal value of the RF choke L1 is 100 nH. At 
frequencies below 100 MHz this value should be 
increased to 220 nH. At frequencies above 1 GHz a much 
lower value (e.g. 10 nH) can be used to improve return 
losses. For optimal results, a good quality chip inductor 
such as the TDK MLG 1608 (0603), or a wire-wound SMD 
type should be chosen.

Both the RF choke L1 and the 22 nF supply decoupling 
capacitor C1 should be located as closely as possible to 
the MMIC.

Separate paths must be used for the ground planes of the 
ground pins GND1 and GND2, and these paths must be as 
short as possible. When using vias, use multiple vias per 
pin in order to limit ground path inductance.

Figure shows two cascaded MMICs. This configuration 
doubles overall gain while preserving broadband 
characteristics. Supply decoupling and grounding 
conditions for each MMIC are the same as those for the 
circuit of Fig.2.

The excellent wideband characteristics of the MMIC make 
it an ideal building block in IF amplifier applications such 
as LBNs (see Fig.4).

As a buffer amplifier between an LNA and a mixer in a 
receiver circuit, the MMIC offers an easy matching, low 
noise solution (see Fig.5).

In Fig.6 the MMIC is used as a driver to the power amplifier 
as part of a transmitter circuit. Good linear performance 
and matched input and output offer quick design solutions 
in such applications.

handbook, halfpage

MGU436

RF out

RF in

C1

L1

C2

C3

GND2

GND1

Vs

Vs

RF input

RF output

Fig.2  Typical application circuit.

handbook, halfpage

DC-block

100 pF

DC-block

100 pF

DC-block

100 pF

input

output

MGU437

Fig.3  Easy cascading application circuit.

handbook, halfpage

from RF

circuit

to IF circuit
or demodulator

MGU438

mixer

oscillator

wideband

amplifier

Fig.4  Application as IF amplifier.

handbook, halfpage

antenna

to IF circuit
or demodulator

MGU439

mixer

oscillator

LNA

wideband

amplifier

Fig.5  Application as RF amplifier.

handbook, halfpage

from modulation

or IF circuit

to power
amplifier

MGU440

mixer

oscillator

wideband

amplifier

Fig.6  Application as driver amplifier.

Summary of Contents for BGM1012

Page 1: ...DATA SHEET Product specification Supersedes data of 2002 May 16 2002 Sep 06 DISCRETE SEMICONDUCTORS BGM1012 MMIC wideband amplifier dbook halfpage MBD128...

Page 2: ...e Integrated Circuit MMIC wideband amplifier with internal matching circuit in a 6 pin SOT363 SMD plastic package PINNING PIN DESCRIPTION 1 VS 2 5 GND2 3 RF out 4 GND1 6 RF in MAM455 1 3 2 4 1 6 3 2 5...

Page 3: ...TICS SYMBOL PARAMETER CONDITIONS MIN MAX UNIT VS DC supply voltage RF input AC coupled 4 V IS supply current 50 mA Ptot total power dissipation Ts 90 C 200 mW Tstg storage temperature 65 150 C Tj oper...

Page 4: ...1 GHz 9 11 dB f 2 2 GHz 13 15 dB RL OUT return losses output f 1 GHz 11 14 dB f 2 2 GHz 10 13 dB s12 2 isolation f 1 GHz 30 33 dB f 2 2 GHz 35 38 dB NF noise figure f 1 GHz 4 8 5 1 dB f 2 2 GHz 4 9 5...

Page 5: ...e 3 shows two cascaded MMICs This configuration doubles overall gain while preserving broadband characteristics Supply decoupling and grounding conditions for each MMIC are the same as those for the c...

Page 6: ...5 0 2 0 5 4 GHz 100 MHz 2 5 180 135 90 45 0 45 90 135 Fig 7 Input reflection coefficient s11 typical values IS 14 6 mA VS 3 V PD 30 dBm ZO 50 handbook full pagewidth MLD911 0 0 2 0 6 0 4 0 8 1 0 1 0 5...

Page 7: ...dB 2 Fig 10 Insertion gain s21 2 as a function of frequency typical values PD 30 dBm ZO 50 1 IS 18 7 mA VS 3 3 V 2 IS 14 6 mA VS 3 V 3 IS 10 6 mA VS 2 7 V handbook halfpage 40 30 PD dBm PL dBm 20 0 2...

Page 8: ...B 3000 5 5 4 5 5 3 5 1 4 9 4 7 MLD916 Fig 13 Noise figure as a function of frequency typical values ZO 50 1 IS 10 6 mA VS 2 7 V 2 IS 14 6 mA VS 3 V 3 IS 18 7 mA VS 3 3 V handbook halfpage 0 f MHz 12 8...

Page 9: ...2 2 1400 0 27902 29 93 10 26450 56 05 0 018230 21 14 0 23292 7 154 2 4 1600 0 26682 31 81 10 40572 65 76 0 016902 21 62 0 24605 2 582 2 5 1800 0 24746 33 12 10 44088 76 97 0 015759 22 32 0 25113 1 26...

Page 10: ...DEC JEITA SOT363 SC 88 w B M bp D e1 e pin 1 index A A1 Lp Q detail X HE E v M A A B y 0 1 2 mm scale c X 1 3 2 4 5 6 Plastic surface mounted package 6 leads SOT363 UNIT A1 max bp c D E e1 HE Lp Q y w...

Page 11: ...ligence warranty breach of contract or any other legal theory Notwithstanding any damages that customer might incur for any reason whatsoever NXP Semiconductors aggregate and cumulative liability towa...

Page 12: ...o the purchase of NXP Semiconductors products by customer No offer to sell or license Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance...

Page 13: ...on presented in this document does not form part of any quotation or contract is believed to be accurate and reliable and may be changed without notice No liability will be accepted by the publisher f...

Reviews: