MPS MP1584 Manual Download Page 12

MP1584 – 3A, 1.5MHz, 28V STEP-DOWN CONVERTER 

 

MP1584 Rev. 1.0 

www.MonolithicPower.com 

12

 

8/8/2011 

MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited. 

 

© 2011 MPS. All Rights Reserved. 

The input capacitor (C1) can be electrolytic, 
tantalum or ceramic. When using electrolytic or 
tantalum capacitors, a small, high quality 
ceramic capacitor, i.e. 0.1

μ

F, should be placed 

as close to the IC as possible. When using 
ceramic capacitors, make sure that they have 
enough capacitance to provide sufficient charge 
to prevent excessive voltage ripple at input. The 
input voltage ripple caused by capacitance can 
be estimated by: 





IN

OUT

IN

OUT

S

LOAD

IN

V

V

1

V

V

1

C

f

I

V

 

Output Capacitor 

The output capacitor (C2) is required to 
maintain the DC output voltage. Ceramic, 
tantalum, or low ESR electrolytic capacitors are 
recommended. Low ESR capacitors are 
preferred to keep the output voltage ripple low. 
The output voltage ripple can be estimated by: 









2

C

f

8

1

R

V

V

1

L

f

V

V

S

ESR

IN

OUT

S

OUT

OUT

 

Where L is the inductor value and R

ESR 

is the 

equivalent series resistance (ESR) value of the 
output capacitor.  

In the case of ceramic capacitors, the 
impedance at the switching frequency is 
dominated by the capacitance. The output 
voltage ripple is mainly caused by the 
capacitance. For simplification, the output 
voltage ripple can be estimated by: 





IN

OUT

2

S

OUT

OUT

V

V

1

2

C

L

f

8

V

Δ

V

 

In the case of tantalum or electrolytic capacitors, 
the ESR dominates the impedance at the 
switching frequency. For simplification, the 
output ripple can be approximated to: 

ESR

IN

OUT

S

OUT

OUT

R

V

V

1

L

f

V

Δ

V





 

The characteristics of the output capacitor also 
affect the stability of the regulation system. The 
MP1584 can be optimized for a wide range of 
capacitance and ESR values. 

Compensation Components 

MP1584 employs current mode control for easy 
compensation and fast transient response. The 
system stability and transient response are 
controlled through the COMP pin. COMP pin is 
the output of the internal error amplifier. A 
series capacitor-resistor combination sets a 
pole-zero combination to control the 
characteristics of the control system. The DC 
gain of the voltage feedback loop is given by: 

OUT

FB

VEA

CS

LOAD

VDC

V

V

A

G

R

A

 

Where A

VEA 

is the error amplifier voltage gain, 

200V/V; G

CS 

is the current sense 

transconductance, 9A/V; R

LOAD 

is the load 

resistor value.  

The system has two poles of importance. One 
is due to the compensation capacitor (C3), the 
output resistor of error amplifier. The other is 
due to the output capacitor and the load resistor. 
These poles are located at: 

VEA

EA

1

P

A

3

C

2

G

f

 

LOAD

2

P

R

2

C

2

1

f

 

Where, G

EA 

is the error amplifier 

transconductance, 60

μ

A/V. 

The system has one zero of importance, due to 
the compensation capacitor (C3) and the 
compensation resistor (R3). This zero is located 
at: 

3

R

3

C

2

1

f

1

Z

 

The system may have another zero of 
importance, if the output capacitor has a large 
capacitance and/or a high ESR value. The zero, 
due to the ESR and capacitance of the output 
capacitor, is located at: 

ESR

ESR

R

2

C

2

1

f

 

Summary of Contents for MP1584

Page 1: ...nt inductor current runaway during startup and thermal shutdown provides reliable fault tolerant operation By switching at 1 5MHz the MP1584 is able to prevent EMI Electromagnetic Interference noise p...

Page 2: ...y Voltage VIN 4 5V to 28V Output Voltage VOUT 0 8V to 25V Operating Junct Temp TJ 20 C to 125 C Thermal Resistance 4 JA JC SOIC8E 50 10 C W Notes 1 Exceeding these ratings may damage the device 2 The...

Page 3: ...VIN 28V 1 A Current Limit 4 0 4 7 A COMP to Current Sense Transconductance GCS 9 A V Error Amp Voltage Gain 5 200 V V Error Amp Transconductance ICOMP 3 A 40 60 80 A V Error Amp Min Source current VF...

Page 4: ...ied to this pin 4 FB Feedback This is the input to the error amplifier The output voltage is set by a resistive divider connected between the output and GND which scales down VOUT equal to the interna...

Page 5: ...VIN 12V VOUT 5V C1 10 F C2 22 F L1 10 H TA 25 C unless otherwise noted VSW 10V div VOUT AC Coupled 10mV div IL 1A div VSW 10V div VOUT AC Coupled 10mV div IL 1A div 1 v Steady State IOUT 0 1A fSW 500k...

Page 6: ...div Startup IOUT 0 1A 1ms div Shutdown IOUT 0 1A 5ms div Startup IOUT 1A Shutdown IOUT 1A 5ms div Startup IOUT 2A VOUT 2V div IL 1A div VSW 10V div VEN 5V div VOUT 2V div IL 1A div VSW 10V div VEN 5V...

Page 7: ...tion with current mode control for fast loop response and easy compensation It features a wide input voltage range internal soft start control and precision current limiting Its very low operational q...

Page 8: ...ect the chip from operating at insufficient supply voltage The UVLO rising threshold is about 3 0V while its falling threshold is a consistent 2 6V Internal Soft Start The soft start is implemented to...

Page 9: ...till the end of the turn on transition to avoid noise issues The comparator then compares the power switch current with the COMP voltage When the sensed current is higher than the COMP voltage the com...

Page 10: ...while being driven by the switched input voltage A larger value inductor will result in less ripple current that will result in lower output ripple voltage However the larger value inductor will have...

Page 11: ...put Rectifier Diode The output rectifier diode supplies the current to the inductor when the high side switch is off To reduce losses due to the diode forward voltage and recovery times use a Schottky...

Page 12: ...capacitors the ESR dominates the impedance at the switching frequency For simplification the output ripple can be approximated to ESR IN OUT S OUT OUT R V V 1 L f V V The characteristics of the outpu...

Page 13: ...and good stability at given conditions Table 3 Compensation Values for Typical Output Voltage Capacitor Combinations VOUT V L H C2 F R3 k C3 pF C6 1 8 4 7 47 105 100 None 2 5 4 7 6 8 22 54 9 220 None...

Page 14: ...inside the high di dt power loop If you have to do so the proper ground plane must be in place to isolate those Switching loss is expected to be increased at high switching frequency To help to improv...

Page 15: ...2011 MPS All Rights Reserved TYPICAL APPLICATION CIRCUITS C3 100pF C6 NS C4 100nF D1 VOUT 1 8V VIN 4 5V 28V VIN EN FREQ GND BST 5 8 1 4 3 7 2 6 SW FB COMP MP1584 EN Figure 3 1 8V Output Typical Appli...

Page 16: ...area formed by Input cap high side MOSFET and external switching diode 2 Bypass ceramic capacitors are suggested to be put close to the VIN Pin 3 Ensure all feedback connections are short and direct P...

Page 17: ...0 013 0 33 0 020 0 51 SEATING PLANE 0 000 0 00 0 006 0 15 0 051 1 30 0 067 1 70 TOP VIEW FRONT VIEW SIDE VIEW BOTTOM VIEW NOTE 1 CONTROL DIMENSION IS IN INCHES DIMENSION IN BRACKET IS IN MILLIMETERS 2...

Reviews: