background image

 
Technical Guide 
Testing self-powered relays with SVERKER 900 
 

 
 

  Page 4(33)  

 
 

1.  Introduction to this Technical Guide. 

Self-powered relays will be an important component for the protection of the smart grid. While they allow 
reducing the cost of the protection system, they are definitely a challenge for relay test sets, that are required to 
provide the voltage and current signals to simulate the power system fault, but also the generated signals need 
to have necessary electric power to supply the protection relay. 
SVERKER 900 is designed to manage this task and this Technical Guide describes how two self-powered 
relays can be tested.  
This document guides through the testing of two self-powered overcurrent relays from SEG GmbH (formerly 
Woodward), WIC-1 and WIP-1, with the relay test set SVERKER 900, for commissioning/maintenance 
purposes. The Technical Guide details on the principles adopted in the testing with reference to relevant IEC 
standards and to the relay manuals. In addition, basic instructions on the correct usage of the testing 
possibilities offered by SVERKER 900 are described. 

2.  About self-powered relays: past and future. 

Traditionally the self-powered relays have been used in secondary distribution network, in MV/LV substations 
for the last 40 years. Normally if the MV/LV power transformer is greater than 800 kVA the transformer is 
protected with a self-powered relay, and if the transformer has lower rated power, it is normally protected with a 
MV- Fuse. 

In order to be operational, self-powered relays drain the necessary energy from the current signal delivered by 
the main CTs (some other applications may drain this energy from voltage transformers instead). Therefore, the 
load currents, and eventually the fault currents, deliver the energy to the relay for its operation. 

The need to have an external power supply (typically a battery system with all the related DC network structure) 
for the relay functionality and for the tripping of the circuit breaker is then minimized, if not completely removed, 
bringing to a clear cost reduction and more simple protection system. 

Looking at the near future, it can be said that the concept of smart grid

1

 is penetrating our society more and 

more: solar panels are installed on the roofs of common people houses, electrical vehicles are charged at our 
homes and hopefully one day will be able to deliver energy to the grid (V2G [2])

2

. More technically, smart grids 

penetrates all the “voltage levels”. 
One of the important factors that will affect the speed of this penetration is the “cost” to do it. Also for the 
protection of the smart grid power system, the cost is important. Technically the solutions to protect the smart 
grid are in principle available from the competence in protecting the high voltage power system networks 
(transmission networks), but the smart grid cannot tolerate the costs of the high voltage system protection, in 
terms of complexity and price of the equipment. 

Self-powered relays provide an important contribution to reduce the cost of the protection of the smart grid [3], 
and it is then foreseen that their usage will grow in the near future, the more the smart grid is implemented. 

3.  General topics related to testing self-powered relays. 

3.1. Direct secondary injection or injection through test circuits 

There is in principle no practical difference between these two types of injection. 
The “direct secondary injection” is the usual secondary injection for a usual protection relay. The test set applies 
the current waveforms to the analog inputs of the protection relay. The self-powered relay will draw the energy 
for its functionality from the injected currents [4]. 

The injection through test terminals on board of the relay is foreseen for some self-powered relays (Figure 1, [5] 
and [6]). This simplifies the practical maintenance operations in the field because there is no need to short 
circuit the secondary side of the main CTs and to create a connection from the relay test set to the relay analog 
inputs, as usually done for the conventional direct secondary injection. 

                                                           

1 The definition of smart grid is not easy. According to the International Electrotechnical Vocabulary (IEV, IEC 60050) [1], 

smart grid is one electric power system that utilizes information exchange and control technologies, distributed computing 
and associated sensors and actuators, for purposes such as: 

– To integrate the behaviour and actions of the network users and other stakeholders, 
– To efficiently deliver sustainable, economic and secure electricity supplies 
While this definition is very generic, in practice smart grid is in these years associated to distributed power generation 

(photovoltaic, wind), to energy storage, to standardised communication protocols and methods (IEC 61850). 

2 V2G means Vehicle to Grid. Many tests are done already today in 2020 for achieving this goal. 

Summary of Contents for SVERKER 900

Page 1: ...megger com ZR CR15E Doc CR036201AE V01 Sept 2020 Page 1 33 Testing self powered relays with SVERKER 900 Authors Andrea Bonetti Megger Sweden AB Klaus Spitzenberg Megger GmbH Germany Lennart Schotteniu...

Page 2: ...Technical Guide Testing self powered relays with SVERKER 900 Page 2 33...

Page 3: ...PHASE OVERCURRENT RELAY 12 5 2 1 Relay settings 12 5 2 2 Connecting SVERKER 900 to WIC 1 relay 13 5 2 3 SVERKER 900 settings 14 5 2 4 Testing the overcurrent protection function 15 5 2 5 Can we accept...

Page 4: ...es and hopefully one day will be able to deliver energy to the grid V2G 2 2 More technically smart grids penetrates all the voltage levels One of the important factors that will affect the speed of th...

Page 5: ...nd it is induced back to the analog inputs of the relay From that current the relay draws the energy to power itself Figure 2 The line feeder must be de energized no primary current shall flow into th...

Page 6: ...lt current for a certain period before the fault current is really injected In SVERKER 900 this means that the pre fault and fault instrument shall be used where the pre fault currents are set at a ce...

Page 7: ...er to apply the standardized test methodologies end users for procurement specification acceptance tests the entire relay protection community in general as well as for commissioning testing engineers...

Page 8: ...st of the border it is intended to verify the accuracy of the border of the relay characteristic For overcurrent relays the characteristic is defined by the start value pick up value5 the current thre...

Page 9: ...imes at values smaller than 1 3 times the threshold but remember that in case of discussions the IEC 60255 151 requires to test the operate time at least at 1 3 times the start value if no other value...

Page 10: ...is document is W1C1 W2AS1 Figure 6 and Figure 7 The selected nominal primary current Is will be chosen to be 20 A Figure 6 The multi winding CT of type W1C1 W2AS1 The relay settings are made with dips...

Page 11: ...user s manual pages 20 21 and 22 5 Copyright SEG GmbH their position in the tested relay and list of different CTs The Normal Inverse characteristic for WIC 1 relay is the standardized curve A Invers...

Page 12: ...ent to 50 A primary current I _test 30 A x 1 50 0 6 A Characteristic Normal Inverse Time Multiplier a 0 3 I _test 200 A x 1 50 4 0 A Characteristic Definite Time Time Delay t 200 ms The table below re...

Page 13: ...rms that no matter which current transformer is used the base value of the secondary test current is 0 4 A Figure 10 Figure 10 No matter which current transformer is used the windings are arranged in...

Page 14: ...input nr 18 of SVERKER 900 needs to be configured in such a way to be able to manage the voltage trip signal from WIC 1 Voltage sensing trigger on voltage presence from 0 to 1 DC voltage threshold 20...

Page 15: ...s as shown in Figure 12 5 2 4 Testing the overcurrent protection function Considering the information in par 5 2 3 set up the necessary conditions in SVERKER 900 and run the sequence of tests10 Before...

Page 16: ...gure 15 Figure 15 First fault of 0 8 A timeout after 10 seconds in MTT pre fault and fault Select MTT by tapping on its button MTT is now armed Figure 16 Figure 16 Activation arming of the MTT mode in...

Page 17: ...w 4A threshold for I for testing the non trip of the I threshold par 4 1 3 In this case tests slightly above 4A have been done but the test results were well in line with the expected values so there...

Page 18: ...he test current see par 5 2 1 The procedure is very intuitive Figure 21 Adding the reference curve for I and I Tap on to see the result on a larger graph Figure 22 Figure 22 Viewing the test results g...

Page 19: ...ings 10 above and 10 below the real settings In this case we obtain two curves that reasonably show the error in the time characteristic When the error for the measured current is below the injected v...

Page 20: ...ault fault current of 7 A above I threshold of 4 A Remember please that those current values are always referred to the test current It is always good to have in mind the primary values associated to...

Page 21: ...KER 900 Page 21 33 Figure 25 MTT Pre fault and fault sequence for the presence of load before the fault and test results Figure 26 MTT Pre fault and fault sequence for simulation of no presence of loa...

Page 22: ...fault Fault 7 A 1 202 ms 216 ms 2 203 ms 215 ms 3 203 ms 216 ms 4 202 ms 215 ms 5 203 ms 215 ms AVERAGE 202 6 ms 215 4 ms We can conclude that the additional time required by WIC 1 to start up some 1...

Page 23: ...nce conditions this test enables a self testing self supervision through a special procedure that tests the tripping circuit and other signals Figure 27 Figure 27 Procedure for testing the tripping ci...

Page 24: ...hen press Enter again until selected value comes up When I value is set press again to to set Characteristic repeate above to select If password is still valid only press Enter until selected choise c...

Page 25: ...user s manual 4 Copyright SEG GmbH 6 2 3 SVERKER 900 settings For testing the phase overcurrent protection function the instrument MTT 12 of pre fault and fault and the possibility to draw graphs of t...

Page 26: ...ressing the knob Once the operate time is recorded by the SVERKER 900 just rotate the knob to change the fault level and press it again to inject it Until you have finished with the sequence of tests...

Page 27: ...5 A timeout after 20 seconds in MTT pre fault and fault Figure 32 Activation arming of the MTT mode in pre fault and fault Press the knob to start the injection To stop the sequence of tests tap At th...

Page 28: ...n phase L1 If this time elapses without that the injection has occurred the procedure must be started again from the relay HMI Before preparing the relay for this test prepare the SVERKER 900 connecti...

Page 29: ...tton on relay HMI to acknowledge that the test is terminated just follow the instructions that the relay proposes through its screen A simple video clip 14 shows the self testing procedure in WIP 1 re...

Page 30: ...ure 38 For repeating the tests MTT in pre fault and fault instrument has been used Different approaches are of course possible Figure 37 MTT Pre fault and fault sequence for the presence of load befor...

Page 31: ...negligible compared to the operate time when the load current is available before the fault Switch onto fault condition or fault in unloaded feeders does not create any noticeable extra time delay in...

Page 32: ...nput Output IEC TC JWG 17 Documentation of communication in power utility automation https www linkedin com in bonetti andrea 8 2 Klaus Spitzenberg Klaus is training manager and application expert at...

Page 33: ...luation of distance protection relays in 2016 IEEE PES Transmission and Distribution Conference and Exposition T D May 2016 pp 1 6 doi 10 1109 TDC 2016 7520031 8 IEC 60255 151 2009 IEC Webstore https...

Reviews: