background image

LTC3350

21

3350fc

For more information 

www.linear.com/LTC3350

applicaTions inForMaTion

Digital Configuration

Although the LTC3350 has extensive digital features, only 

a few are required for basic use. The shunt voltage should 

be programmed via the vshunt register if a value other 

than the default 2.7V is required. The capacitor voltage 

feedback reference defaults to 1.2V; it may be changed 

in the vcapfb_dac register.
All other digital features are optional and used for moni-

toring. The ADC automatically runs and stores conver-

sions to registers (e.g., meas_vcap). Capacitance and ESR 

measurements only run if requested, however, they may 

be scheduled to repeat if desired (ctl_strt_capesr and cap_

esr_per). Each measured parameter has programmable 

limits (e.g.,  vcap_uv_lvl  and  vcap_ov_lvl)  which  may 

trigger an alarm and SMBALERT when enabled. These 

alarms are disabled by default.

Capacitor Configuration

The LTC3350 may be used with one to four supercapaci-

tors. If less than four capacitors are used, the capacitors 

must be populated from CAPRTN to CAP4, and the unused 

CAP pins must be tied to the highest used CAP pin. For 

example, if three capacitors are used, CAP4 should be tied 

to CAP3. If only two capacitors are used, both CAP4 and 

CAP3 should be tied to CAP2. The number of capacitors 

used  must  be  programmed  on  the  CAP_SLCT0  and 

CAP_SLCT1 pins by tying the pins to VCC2P5 for a one 

and ground for a zero as shown in Table 1. The value 

programmed on these pins may be read back from the 

num_caps register via I

2

C/SMBus.

Table 1

CAP_SLCT1

CAP_SLCT0

num_caps  

REGISTER VALUE

NUMBER OF 

CAPACITORS

0

0

0

1

0

1

1

2

1

0

2

3

1

1

3

4

Capacitor Shunt Regulator Programming

V

SHUNT

 is programmed via the I

2

C/SMBus interface and 

defaults to 2.7V at initial power-up. V

SHUNT

 serves to limit 

the voltage on any individual capacitor by turning on a 

shunt around that capacitor as the voltage approaches 

V

SHUNT

. CAPRTN, CAP1, CAP2, CAP3 and CAP4 must be 

connected to the supercapacitors through resistors which 

serve as ballasts for the internal shunts. The shunt cur-

rent is approximately V

SHUNT

 divided by twice the shunt 

resistance value. For a V

SHUNT

 of 2.7V, 2.7Ω resistors 

should be used for 500mA of shunt current. The shunts 

have a duty cycle of up to 75%. The power dissipated in 

a single shunt resistor is approximately: 

   

P

SHUNT

3V

SHUNT

2

16R

SHUNT

and the resistors should be sized accordingly. If the shunts 

are disabled, make R

SHUNT

 100Ω.

Since the shunt current is less than what the switcher can 

supply,  the  on-chip  logic  will  automatically  reduce  the 

charging current to allow the shunt to protect the capacitor. 

This greatly reduces the charge rate once any one shunt is 

activated. For this reason, V

SHUNT

 should be programmed 

as high as possible to reduce the likelihood of it activating 

during a charge cycle. Ideally, V

SHUNT

 would be set high 

enough so that any likely capacitor mismatches would not 

cause the shunts to turn on. This keeps the charger operat-

ing at the highest possible charge current and reduces the 

charge time. If the shunts never turn on, the charge cycle 

completes quickly and the balancers eventually equalize 

the voltage on the capacitors. The shunt setting may also 

be used to discharge the capacitors for testing, storage 

or other purposes.

Setting Input and Charge Currents

The maximum input current is determined by the resis-

tance across the VOUTSP and VOUTSN pins, R

SNSI

. The 

maximum charge current is determined by the value of 

the sense resistor, R

SNSC

, used in series with the induc-

tor. The input and charge current loops servo the voltage 

across their respective sense resistor to 32mV. Therefore, 

the maximum input and charge currents are:

   

I

IN(MAX)

=

32mV
R

SNSI

I

CHG(MAX)

=

32mV

R

SNSC

Summary of Contents for LTC3350

Page 1: ...ply Applications n High Efficiency Synchronous Step Down CC CV Charging of One to Four Series Supercapacitors n Step Up Mode in Backup Provides Greater Utilization of Stored Energy in Supercapacitors...

Page 2: ...t 18 Monitor Status Register 19 Charge Status Register 20 Limit Checking and Alarms 20 Die Temperature Sensor 20 General Purpose Input 20 Applications Information 21 Digital Configuration 21 Capacitor...

Page 3: ...TFB SGND RT GPI ITST CAPRTN VOUTSP VOUTSN INTVCC DRVCC BGATE BST TGATE SW VCC2P5 ICAP VCAP OUTFET PFO PFI CAP_SLCT1 CAP_SLCT0 V IN INFET VOUTM5 CAP1 CAP2 CAP3 CAP4 CFP CFN VCAPP5 23 22 21 20 9 10 11 1...

Page 4: ...ndervoltage Lockout Rising Threshold Falling Threshold l l 3 75 4 2 3 9 4 35 V V VDUVLO VIN VCAP Differential Undervoltage Lockout Rising Threshold Falling Threshold l l 145 55 185 90 225 125 mV mV VO...

Page 5: ...oltage 5 2V VIN 35V 5 V VINTVCC Load Regulation IINTVCC 50mA 1 5 2 5 PowerPath Ideal Diodes VFTO Forward Turn On Voltage 65 mV VFR Forward Regulation 30 mV VRTO Reverse Turn Off 30 mV tIF ON INFET Ris...

Page 6: ...30V 100 1 5 mV VCAP 0V VCAP 10V 100 1 5 mV VGPI 0V Unbuffered VGPI 3 5V Unbuffered 2 1 mV VCAP1 0V VCAP1 2V 2 1 mV VCAP2 0V VCAP2 2V 2 1 mV VCAP3 0V VCAP3 2V 2 1 mV VCAP4 0V VCAP4 2V 2 1 mV VSNSI 0mV...

Page 7: ...layout the rated package thermal impedance and other environmental factors The junction temperature TJ in C is calculated from the ambient temperature TA in C and power dissipation PD in Watts accord...

Page 8: ...EFFICIENCY 50 75 7 2 3350 G08 25 0 1 8 3 6 5 4 100 VIN 12V VIN 24V VIN 35V IIN MAX 2A IOUT 0A VCAP V 0 I CHARGE A 2 50 3 75 8 3350 G05 1 25 0 2 4 6 5 00 VIN 12V VIN 24V VIN 35V IIN MAX 2A IOUT 0A IOUT...

Page 9: ...nless otherwise noted VIN V 10 I Q mA 4 60 4 75 35 3350 G13 4 45 4 30 15 20 25 30 4 90 125 C 25 C 40 C TEMPERATURE C 40 CODE 5470 5475 130 3350 G14 5460 5465 5455 6 28 62 96 5480 VGPI 1V IL A 0 I DRVC...

Page 10: ...uldalsoKelvintothebottomplateofthecapacitorstack RT Pin 9 Timing Resistor The switching frequency of the synchronous controller is set by placing a resistor RT from this pin to SGND This resistor is a...

Page 11: ...gate drive receives power from the internal charge pump output VCAPP5 The source of the N channel MOSFETshouldbeconnectedtoVCAPandthedrainshould beconnectedtoVOUTSN IftheoutputidealdiodeMOSFET is not...

Page 12: ...e input current sense amplifier Decouple this pin with at least 1 F to VOUT INFET Pin 33 Input Ideal Diode Gate Drive Output This pin controls the gate of an external N channel MOSFET used as an ideal...

Page 13: ...ATE SW CHARGE PUMP DRVCC BGATE CAP4 BIDIRECTIONAL SWITCHING CONTROLLER LOGIC VCC2P5 IIN ICHG VCAP VOUT VIN CAP4 CAP3 CAP2 CAP1 CAPRTN DTEMP CAPGD PFI GPI SGND BANDGAP VREF OSC 2 5V LDO SHUNT CONTROLLE...

Page 14: ...rotection is provided by shunt regulators that use an internal switch and an external resistor across each supercapacitor The LTC3350 monitors system voltages currents and die temperature A general pu...

Page 15: ...current is programmed to exceed the allowable input current the input current will not be violated the supercapacitor charger will reduce its current as needed Note that the part s quiescent and gate...

Page 16: ...odes The LTC3350 has two ideal diode controllers that drive external N channel MOSFETs The ideal diodes consist of a precision amplifier that drives the gates of N channel MOSFETs whenever the voltage...

Page 17: ...ults to full scale 1 2V and is programmed via the vcapfb_dac register Supercapacitors lose capacitance as they age By initially setting the VCAP DAC to a low setting the final charge voltage on the su...

Page 18: ...matsis the 8 bit address of each of these registers The address of the LTC3350 is 0b0001001 The SMBALERT pin is asserted pulled low whenever an enabled limit is exceeded or when an enabled status even...

Page 19: ...hey must be initiated by setting the ctl_strt_capesr bit in the ctl_reg register This bit will automatically clear once the measurement begins If the cap_esr_per register is set to a non zero value th...

Page 20: ...ppropriate bit to the msk_alarms register All alarms that have been set and have not yet been cleared may be read in the alarm_reg register Alloftheindividualmeasuredvoltageshaveacorresponding undervo...

Page 21: ...initial power up VSHUNT serves to limit the voltage on any individual capacitor by turning on a shunt around that capacitor as the voltage approaches VSHUNT CAPRTN CAP1 CAP2 CAP3 and CAP4 must be conn...

Page 22: ...The input current limit is 32mV RSNSI1 ILOAD RSNSI1 RSNSI2 IINCHG For example suppose that only 2A of input current is de sired to charge the supercapacitors but the system load and charger combined c...

Page 23: ...r rent RPF1 RPF2 and RPF3 should be between 1k and 100k Setting VOUT Voltage in Backup Mode The output voltage for the controller in step up mode is set by an external feedback resistor divider as sho...

Page 24: ...to the output from the supercapacitors either through the output ideal diode or the synchronous controller operating in step up mode The output ideal diode provides a low loss power path from the sup...

Page 25: ...tack is VCAP MIN n VCELL MIN Some of this energy will be dissipated as conduction loss in the ESR of the supercapacitor stack A higher backup power requirement leads to a higher conduction loss for a...

Page 26: ...account the lifetime degrada tion of ESR and capacitance as well as the maximum discharge current rating of the supercapacitor A list of supercapacitor suppliers is provided in Table 2 Table 2 Superc...

Page 27: ...unt of high frequency bypass capacitance is needed to minimize voltage ripple The voltage ripple in step up mode is VOUT 1 VCAP VOUT 1 COUT fSW VOUT VCAP RESR IOUT BACKUP Maximumrippleoccursatthelowes...

Page 28: ...ation for low voltage MOSFETs Both MOSFET switches have conduction loss However transition loss occurs only in the top MOSFET in step down mode and only in the bottom MOSFET in step up mode These loss...

Page 29: ...sup ply INTVCC powers the gate drivers when connected to DRVCC and much of the LTC3350 s internal circuitry The LDO regulates the voltage at the INTVCC pin to 5V The LDO can supply a maximum current...

Page 30: ...LTC3350willregulatetheforwardvoltage drop across the input and output ideal diode MOSFETs to 30mVifRDS ON islowenough TherequiredRDS ON canbe calculated by dividing 0 030V by the load current in amps...

Page 31: ...esistors See Figure 10 6 Thetracefromthepositiveterminaloftheinputcurrent sense resistor RSNSI to the VOUTSP pin carries the part s quiescent and gate drive currents To maintain accurate measurement o...

Page 32: ...0 35 iin_oc_lvl 0x11 R W 15 0 IIN overcurrent alarm level 0x0000 35 ichg_uc_lvl 0x12 R W 15 0 ICHG undercurrent alarm level 0x0000 35 dtemp_cold_lvl 0x13 R W 15 0 Die temperature cold alarm level 0x00...

Page 33: ...uc Clear charge undercurrent alarm 12 clr_dtemp_cold Clear die temperature cold alarm 13 clr_dtemp_hot Clear die temperature hot alarm 14 clr_esr_hi Clear ESR high alarm 15 clr_cap_lo Clear capacitanc...

Page 34: ...not repeat if this register is zero vcapfb_dac 0x05 CAPFBREF 37 5mV vcapfb_dac 637 5mV VCAP Regulation Reference This register is used to program the capacitor voltage feedback loop s reference voltag...

Page 35: ...e this level will trigger an alarm and an SMBALERT iin_oc_lvl 0x11 1 983 V RSNSI per LSB Input Overcurrent Level This is an alarm threshold for the input current If enabled the current rising above th...

Page 36: ...mber of capacitors programmed minus one VALUE CAPACITORS 0b00 1 Capacitor Selected 0b01 2 Capacitors Selected 0b10 3 Capacitors Selected 0b11 4 Capacitors Selected chrg_status 0x1B Charger Status Regi...

Page 37: ...nable to charge It is cleared only when power returns and the charger is able to charge 9 mon_power_returned This bit is set when the input is above the PFI threshold and the charger is able to charge...

Page 38: ...Measured voltage between the CAP2 and CAP1 pins meas_vcap3 0x22 183 5 V per LSB Measured voltage between the CAP3 and CAP2 pins meas_vcap4 0x23 183 5 V per LSB Measured voltage between the CAP4 and CA...

Page 39: ...FI C1 0 1 F C2 1 F RPF1 80 6k DB B0540WS CB 0 1 F C3 4 7 F C4 0 1 F CCAP 47 F RFBC1 866k RFBC2 118k CF 0 1 F CCP5 0 1 F CAP1 5F CAP1 4 NESSCAP ESHSR 0005C0 002R7 L1 COILCRAFT XAL7070 682ME CFBO1 120pF...

Page 40: ...P_SLCT0 CAP_SLCT1 VCAPP5 3350 TA03 CFP CAP4 CAP3 CAP2 CAP1 CFN SGND PGND ITST RT T VC GPI DRVCC INTVCC BST BGATE CAP2 360F CAP3 360F CAP4 360F CAPRTN CAPFB Typical Applications Application Circuit 3 1...

Page 41: ...A PFO CAPGD SMBALERT SCL SDA VOUT 10V 10W IN BACKUP TGATE SW ICAP VCAP CAP_SLCT0 CAP_SLCT1 VCAPP5 3350 TA05 CFP CAP4 CAP3 CAP2 CAP1 CFN SGND PGND ITST RT T VC GPI DRVCC INTVCC BST C6 220pF BGATE CAP2...

Page 42: ...acitorvoltageismeasured differently it is no longer measured in the meas_vcap register but in the meas_vcap1 register The scale factor for meas_vcap1 must be adjusted for the resistor divider connecte...

Page 43: ...PFI C1 0 1 F C2 1 F RPF1 30 1k DB B0540WS CB 0 1 F C3 10 F C4 0 1 F CCAP 47 F RFBC1 732k RFBC2 274k CF 0 1 F CCP5 0 1 F CAP1 50F CAP1 2 NESSCAP ESHSR 0050C0 002R7 L1 COILCRAFT XAL7030 102ME CFBO1 100p...

Page 44: ...N MILLIMETERS PIN 1 TOP MARK SEE NOTE 6 37 1 2 38 BOTTOM VIEW EXPOSED PAD 5 50 REF 5 15 0 10 7 00 0 10 0 75 0 05 R 0 125 TYP R 0 10 TYP 0 25 0 05 UH QFN REF C 1107 0 50 BSC 0 200 REF 0 00 0 05 RECOMME...

Page 45: ...n Increase page numbers to all entries on the Register Map For meas_vcap change V to mV Change name to Application Circuit 6 4 5 18 20 23 30 32 38 42 C 08 15 Modified Order Information Table for tempe...

Page 46: ...tors Automatic Cell Balancing Programmable Charging Current to 500mA Single Inductor 1A Dual Inductor 12 Lead 3mm 4mm DFN Package LTC4110 Battery Backup System Manager Complete Backup Battery Manager...

Reviews: