Quad-Core Intel® Xeon® Processor 5300 Series Datasheet
83
Signal Definitions
IGNNE#
I
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric
error and continue to execute noncontrol floating-point instructions. If IGNNE# is
deasserted, the processor generates an exception on a noncontrol floating-point
instruction if a previous floating-point instruction caused an error. IGNNE# has no
effect when the NE bit in control register 0 (CR0) is set.
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal
following an I/O write instruction, it must be valid along with the TRDY# assertion of
the corresponding I/O write bus transaction.
2
INIT#
I
INIT# (Initialization), when asserted, resets integer registers inside all processors
without affecting their internal caches or floating-point registers. Each processor then
begins execution at the power-on Reset vector configured during power-on
configuration. The processor continues to handle snoop requests during INIT#
assertion. INIT# is an asynchronous signal and must connect the appropriate pins of
all processor FSB agents.
2
LINT[1:0]
I
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all FSB agents.
When the APIC functionality is disabled, the LINT0/INTR signal becomes INTR, a
maskable interrupt request signal, and LINT1/NMI becomes NMI, a nonmaskable
interrupt. INTR and NMI are backward compatible with the signals of those names on
the Pentium
®
processor. Both signals are asynchronous.
These signals must be software configured via BIOS programming of the APIC register
space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by
default after Reset, operation of these pins as LINT[1:0] is the default configuration.
2
LL_ID[1:0]
O
The LL_ID[1:0] signals are used to select the correct loadline slope for the processor.
These signals are not connected to the processor die. A logic 0 is pulled to ground and
a logic 1 is a no-connect on the Quad-Core Intel® Xeon® Processor 5300 Series
package.
LOCK#
I/O
LOCK# indicates to the system that a transaction must occur atomically. This signal
must connect the appropriate pins of all processor FSB agents. For a locked sequence
of transactions, LOCK# is asserted from the beginning of the first transaction to the
end of the last transaction.
When the priority agent asserts BPRI# to arbitrate for ownership of the processor
FSB, it will wait until it observes LOCK# deasserted. This enables symmetric agents to
retain ownership of the processor FSB throughout the bus locked operation and
ensure the atomicity of lock.
3
MCERR#
I/O
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable
error without a bus protocol violation. It may be driven by all processor
FSB agents.
MCERR# assertion conditions are configurable at a system level. Assertion
options are defined by the following options:
• Enabled or disabled.
• Asserted, if configured, for internal errors along with IERR#.
• Asserted, if configured, by the request initiator of a bus transaction after it
observes an error.
• Asserted by any bus agent when it observes an error in a bus transaction.
For more details regarding machine check architecture, refer to the Intel® 64 and
IA-32 Intel® Architecture Software Developer’s Manual, Volume 3: System
Programming Guide.
MS_ID[1:0]
O
These signals are provided to indicate the Market Segment for the processor and may
be used for future processor compatibility or for keying. These signals are not
connected to the processor die. A logic 0 is pulled to ground and a logic 1 is a no-
connect on the Quad-Core Intel® Xeon® Processor 5300 Series package.
PECI
I/O
PECI is a proprietary one-wire bus interface that provides a communication channel
between Intel processor and chipset components to external thermal monitoring
devices. See
Section 6.4
for more on the PECI interface.
PROCHOT#
O
PROCHOT# (Processor Hot) will go active when the processor’s temperature
monitoring sensor detects that the processor has reached its maximum safe operating
temperature. This indicates that the Thermal Control Circuit (TCC) has been
activated, if enabled. The TCC will remain active until shortly after the processor
deasserts PROCHOT#. See
Section 6.3.5
for more details.
Table 5-1.
Signal Definitions (Sheet 5 of 7)
Name
Type
Description
Notes
Summary of Contents for Quad-Core Xeon
Page 1: ...Order Number 315569 003 Quad Core Intel Xeon Processor 5300 Series Datasheet September 2007...
Page 8: ...8 Quad Core Intel Xeon Processor 5300 Series Datasheet...
Page 54: ...Mechanical Specifications 56 Quad Core Intel Xeon Processor 5300 Series Datasheet...
Page 84: ...Signal Definitions 86 Quad Core Intel Xeon Processor 5300 Series Datasheet...