background image

MA1044  MAQ20-RTD31/-RTD41 Hardware User Manual

 

 

Page 21 of 38 

15.0    Alarm Functions 

The powerful alarm functions in  the  MAQ20  Data Acquisition System  provide  essential  monitoring 
and warnings to ensure optimum process flow and fail-safe applications. Alarms have the following 
parameters which can be configured: 
 

Alarm Enable

   

Enables the Alarm on a given channel provided that the Alarm Configuration Register has a valid 
configuration. Set the bit corresponding to the given channel to a 1 to enable the alarm. If the Alarm 
Configuration register for the given channel does not have a valid value, the write will be ignored 
and the Alarm Enable bit will remain 0. Write a 0 to the bit corresponding to the given channel to 
disable the alarm and clear any alarms that have tripped. 
 

Alarm Configuration

 

Selects Tracking or Latching alarms for a given channel and selects which limits trip the alarm - 
High, Low, High-High or Low-Low. There is a register for each channel. The value written to this 
register is the sum of the codes for the Alarm Type and Alarm Limits. See the 

Setting and Monitoring 

Alarms

 section for the specific codes. If an invalid value is written to this register, the value will be 

ignored and the last valid value that the register contained will be kept. If a 0 is written to the register, 
the Alarm Enable register for the channel will be set to 0 and alarms that the channel has tripped 
will be cleared. 
 
Tracking alarms follow the value of the input signal and reset automatically when the signal comes 
back into the valid range specified by the limit and deadband. Latching alarms trip when the signal 
exceeds the alarm condition and remain set until reset by the user. 
 

High Limit 

Sets the value for the High limit in counts. Alarm status is stored in a register. 
 

Low Limit 

Sets the value for the Low limit in counts. Alarm status is stored in a register. 
 

High Low Deadband 

Used  for  the  High  and/or  Low  limits  to  prevent  false  tripping  or  alarm  chatter  for  noisy  signals. 
Deadband is the region less than the High limit or greater than the Low limit, measured in counts, 
which the signal must traverse through before the alarm is reset after being tripped.   
 

High-High Limit 
 

Sets the value for the High-High limit in counts. Alarm status is stored in a register. 

 

Low-Low Limit 
 

Sets the value for the Low-Low limit in counts. Alarm status is stored in a register. 

 

High-High Low-Low Deadband 

Used for the High-High and/or Low-Low limits to prevent false tripping or alarm chatter for noisy 
signals. Deadband  is the region less  than the High-High limit or  greater than the Low-Low  limit, 
measured in counts, which the signal must traverse through before the alarm is reset after being 
tripped.   
 

See Figure 11 below for graphical representations of alarm parameters and functionality. 

Summary of Contents for MAQ20-RTD31

Page 1: ...MAQ 20 Industrial Data Acquisition and Control System MA1044 MAQ20 RTD31 MAQ20 RTD41 Hardware User Manual ...

Page 2: ...ce The information tables diagrams and photographs contained herein are the property of Dataforth Corporation No part of this manual may be reproduced or distributed by any means electronic mechanical or otherwise for any purpose other than the purchaser s personal use without the express written consent of Dataforth Corporation MAQ 20 is a registered trademark of Dataforth Corporation ReDAQ is a ...

Page 3: ...ification and Status Registers 9 9 0 Building a System 11 10 0 Maintaining a System 12 11 0 Expanding a System 13 12 0 MAQ20 I O Module Registration and Reading Input Signals 14 13 0 Range Selection Channel Enable Reading Signals 16 14 0 Channel Scan Rate System Throughput Module Internal Multiplexer 19 15 0 Alarm Functions 21 16 0 Setting and Monitoring Alarms 23 17 0 Signal Average Minimum Maxim...

Page 4: ...ing effects of noise transient power surges internal ground loops and other hazards present in industrial environments Dataforth spans the globe with more than 50 International Distributors and US Representative Companies Our customers benefit from a team of over 130 salespeople highly trained in the application of precision products for industrial markets In addition we have a team of application...

Page 5: ...cquisition Up to 24 I O modules or 384 analog or 480 digital channels per system 19 rack width Per channel configurable for range alarms and other functions Backbone mounts within DIN rail and distributes power and communications System firmware automatically registers the installation and removal of I O modules I O modules can be mounted remotely from the Communications Module Equal load sharing ...

Page 6: ...MAQ20 RTD and potentiometer input modules MAQ20 RTD31 and MAQ20 RTD41 interface to 3 wire sensor and 4 wire sensors MAQ20 RTD31 has 6 input channels and MAQ20 RTD41 has 5 input channels MAQ20 RTD31 interfaces to 100Ω Platinum RTDs 120Ω Nickel RTDs and Potentiometers and MAQ RTD41 interfaces to 100Ω Platinum RTDs and 120Ω Nickel RTDs Precision matched low magnitude current sources for sensor excita...

Page 7: ...n Channel to Channel 3V Transient ANSI IEEE C37 90 1 CMR 100dB 50 60 Hz NMR 20dB 50 60 Hz Accuracy 1 0 06 span Conformity 0 035 span Resolution 0 012 span Stability Zero 50ppm C Span 35ppm C Bandwidth 3Hz Scan Rate 2 Internal Scan to Module Memory 5ms Ch 200 Ch s Module Poll Rate Channel Data from Module Memory 6ms Poll and 6 ch Poll 167 S s per channel 1000 S s total Alarms High High High Low Low...

Page 8: ...ule Dimensions Table 1 RTD and Potentiometer Input Module Input Terminal Block Connections TERMINAL BLOCK POSITION TOP TO BOTTOM MAQ20 RTD31 INPUT CONNECTIONS MAQ20 RTD41 INPUT CONNECTIONS 1 CH0 EXC SHIELD CH0 EXC SHIELD 2 CH0 IN CH0 IN 3 CH0 IN CH0 IN 4 CH1 EXC SHIELD CH0 EXC 5 CH1 IN CH1 EXC SHIELD 6 CH1 IN CH1 IN 7 CH2 EXC SHIELD CH1 IN 8 CH2 IN CH1 EXC 9 CH2 IN CH2 EXC SHIELD 10 NC CH2 IN 11 N...

Page 9: ...block to the sensor and wires must be the same length and gage For 2 Wire sensor connections jumper the EXC and IN terminals at the module input terminal block Shield terminals are connected to the Field Side low impedance potential and are isolated from the Bus If shield drain to system ground is required this connection must be made external to the module and must not compromise the Field Side t...

Page 10: ...res must run the entire distance from the module input terminal block to the sensor Shield terminals are connected to the Field Side low impedance potential and are isolated from the Bus If shield drain to system ground is required this connection must be made external to the module and must not compromise the Field Side to Bus isolation barrier A capacitor with working voltage rating of 2000V or ...

Page 11: ... Rotate the module and snap in place To remove a module reverse the steps in the installation process If space is available the clip at the bottom of the module can be squeezed by hand to release For tight installations insert a flat blade screwdriver into the recess in the clip 5 place the shaft of the screwdriver against the curved part of the clip and gently pry the clip to release 6 as shown b...

Page 12: ... so the module location in a system can be visually identified Referring to the Address Map this module register is at address 98 offset from the module base address LED Constant On or Constant Off Abnormal operation Remove and reinstall module to force a reset Remove and reinstall module into another backbone position Determine if the module is communicating by observing the TX and RX LEDs RX TX ...

Page 13: ...y be used for visible unique identification in an installed system Additionally the system has a utility to provide a visual indication of module response for identification Any write to address 98 plus the offset based on the Registration Number will blink the STATUS LED on the top angled surface of the module at a 5Hz rate for 5 seconds The MAQ20 RTD31 Address Map and MAQ20 RTD41 Address Map are...

Page 14: ...e Number of Registers Contents Description Data Range Data type 1900 R W 1 Watchdog Flag 1 Watchdog Reset 0 Normal 0 or 1 INT16 1902 R W 1 I2C Error I2C TX Error Counter 0 to 65 535 INT16 1903 R W 1 I2C Error I2C RX Error Counter 0 to 65 535 INT16 1906 R W 1 Numeric Error Increments when a value received is outside of the allowed range 0 to 65 535 INT16 1908 R W 1 UART RX Error UART RX Error Count...

Page 15: ...d to a system When system power is cycled or the system is reset I O module Registration Numbers will always remain the same If I O modules are removed while the system is powered they will be unregistered and the slots or registration numbers become available to register new modules once inserted If I O modules are removed while the system is powered and then the power is cycled the remaining mod...

Page 16: ...onnect input output wiring to the I O module and if desired record physical position in the system 3 Repeat Step 2 for any remaining MAQ20 I O modules in the system requiring maintenance ALTERNATE MAINTENANCE PROCESS 1 With system power off remove any I O modules which are to be replaced Replace the modules with others of the same or different model numbers Modules can be installed in any vacant l...

Page 17: ...ach module has the green Power LED on and communications activity is seen on the TX and RX LEDs Registration is complete when module TX and RX LEDs all have a repeating blink pattern Added modules have now been assigned the next available sequential Registration Numbers but in a random sequence not associated with the physical position on the backbone Modules previously installed and registered in...

Page 18: ...ion Number 2 is assigned address space 4000 5999 and so on The starting address for the module is very important because this is the offset address that must be added to the addresses listed in the I O module register address map to know where data for that module is located within the system level address map The MAQ20 COMx Communication Module is always assigned a Registration Number of 0 and ca...

Page 19: ... modules are displayed in the software if the Alternate Registration Processes have been used instead of the Standard Registration Processes Refer to the Building a System Maintaining a System and Expanding a System sections for further details ReDAQ Shape Software for MAQ20 presents a graphical representation of the system on the Acquire panel as shown in Figure 9 I O modules are displayed sequen...

Page 20: ... to save the new configuration The new registration sequence is permanent across power cycles and any other system configuration as long as I O modules are not removed from or added to a system 13 0 Range Selection Channel Enable Reading Signals The MAQ20 RTD31 module has three user selectable sensor types and five user selectable input ranges The MAQ20 RTD41 module has two user selectable sensor ...

Page 21: ...t by 2000 R where R is the Registration Number Refer to the MAQ20 I O Module Registration section for further details Table 7 MAQ20 RTD31 Address Map Excerpt Module Configuration Address Range 100 699 Module Configuration Start Address Read Write Number of Registers Contents Description Data Range Data type 100 R W 6 Input Sensor Range Platinum Nickel Potentiometer Default 0 0 to 4 INT16 119 W 1 S...

Page 22: ...Range Table shows that Range 1 is PT100 200 C to 200 C in and Range 3 is potentiometer 0Ω to 5000Ω in Range information is also stored in registers at Addresses 1700 1800 for user read back if desired Write to register address 4000 100 4100 a data value of 1 to set Ch 0 to PT100 200 C 200 C Write to register address 4000 101 4101 a data value of 1 to set Ch 1 to PT100 200 C 200 C Write to register...

Page 23: ...efore the scan rate for an individual module and for the channels within that module decreases The following calculation is used to determine channel scan rate for each of the 6 input channels in a MAQ20 RTD31 input module operating in a system of modules The same method applies to determine the channel scan rate of the 5 input channels in a MAQ20 RTD41 module Command response cycle 6ms Module Sca...

Page 24: ...ses the factory default configuration of all 6 channels enabled new data is posted to the Channel Data register at a rate of 5ms Ch 6Ch 30ms System command response cycle 6ms In this system MAQ20 COM4 MAQ20 RTD31 The MAQ20 RTD31 input channel scan rate is 6ms so it is possible to read the module faster than the internal multiplexer rate In this case the same data will be reported as on the prior s...

Page 25: ...he register the Alarm Enable register for the channel will be set to 0 and alarms that the channel has tripped will be cleared Tracking alarms follow the value of the input signal and reset automatically when the signal comes back into the valid range specified by the limit and deadband Latching alarms trip when the signal exceeds the alarm condition and remain set until reset by the user High Lim...

Page 26: ...MA1044 MAQ20 RTD31 RTD41 Hardware User Manual Page 22 of 38 Figure 11 Alarm Parameters and Functionality ...

Page 27: ...r a Latched alarm write a 0 to the corresponding channel bit 0 to 65 535 INT16 703 R W 1 Alarm Status High High To clear a Latched alarm write a 0 to the corresponding channel bit 0 to 65 535 INT16 704 R W 1 Alarm Enable 1 Enabled 0 Disabled See Setting Monitoring Alarms INT16 710 R W 6 Alarm Configuration Alarm Configuration See Setting Monitoring Alarms INT16 730 R W 6 High Limit High Alarm Limi...

Page 28: ...nts a Low limit of 500 counts and a Deadband of 100 counts The MAQ20 RTD31 module with s n 1234567 89 has an address offset of 2000 3 6000 Write to register address 6000 711 6711 a value of 1000 300 1300 to set a Tracking Alarm with High Low limits Write to register address 6000 731 6731 a data value of 3000 to set the High limit Write to register address 6000 751 6751 a data value of 500 to set t...

Page 29: ...umber of Registers Contents Description Data Range Data type 1000 R W 6 Channel Data Data for all 6 Channels Table 14 INT16 1016 R W 1 Alarm Status Status of Low Low Alarm 0 to 65 535 INT16 1017 R W 1 Alarm Status Status of Low Alarm 0 to 65 535 INT16 1018 R W 1 Alarm Status Status of High Alarm 0 to 65 535 INT16 1019 R W 1 Alarm Status Status of High High Alarm 0 to 65 535 INT16 1030 R W 6 Data M...

Page 30: ...he settings used at the factory during manufacture It performs the standard reset actions plus resets most non volatile parameters to default settings Parameters stored in EEPROM are not affected Table 2 shows what parameters are affected for each reset Table 12 Standard Reset Reset to Default RESET TYPE PARAMETERS Standard Reset Disables all Alarms Clears Alarm Status Resets Alarm Configuration L...

Page 31: ... register write before carrying out the reset This means the module will be unresponsive to commands for approximately 3 seconds Power On Reset POR and Brownout MAQ20 I O modules utilize a brown out detect circuit and watchdog timer to ensure reliable and predictable operation under all conditions Upon power cycle brown out detect or any extreme circumstance under which the watchdog timer expires ...

Page 32: ...tored at the specified address ASCII 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz INT16 16 bit integer value 0 to 65535 unless otherwise indicated Stored at a single address INT32 32 bit integer value 0 to 4294967295 unless otherwise indicated Stored at two 16 bit addresses MSB is stored at address N LSB is stored at address N 1 Module register addresses 0 to 1999 in the table be...

Page 33: ...channel bit 0 to 65 535 INT16 702 R W 1 Alarm Status High To clear a Latched alarm write a 0 to the corresponding channel bit 0 to 65 535 INT16 703 R W 1 Alarm Status High High To clear a Latched alarm write a 0 to the corresponding channel bit 0 to 65 535 INT16 704 R W 1 Alarm Enable 1 Enabled 0 Disabled See Setting Monitoring Alarms INT16 709 W 1 Save Alarm Parmeters to EEPROM Writing 1 saves th...

Page 34: ... W 8 Channel 1 Data Last 8 readings for Ch 1 Tables 14 15 INT16 1110 R W 8 Channel 2 Data Last 8 readings for Ch 2 Tables 14 15 INT16 1120 R W 8 Channel 3 Data Last 8 readings for Ch 3 Tables 14 15 INT16 1130 R W 8 Channel 4 Data Last 8 readings for Ch 4 Tables 14 15 INT16 1140 R W 8 Channel 5 Data Last 8 readings for Ch 5 Tables 14 15 INT16 Address Range 1700 1899 Input Ranges Start Address Read ...

Page 35: ...se 32 767 to 32 768 INT16 1758 R 1 Range 2 Count Value of fs 32 767 to 32 768 INT16 1759 R 1 Range 2 Future Use 32 767 to 32 768 INT16 1760 R 1 Range 2 Count Value of fs 32 767 to 32 768 INT16 1770 R 1 Range 3 Engineering fs 32 767 to 32 768 INT16 1771 R 1 Range 3 Future Use 32 767 to 32 768 INT16 1772 R 1 Range 3 Engineering fs 32 767 to 32 768 INT16 1773 R 1 Range 3 Future Use 32 767 to 32 768 I...

Page 36: ...0 R W 1 UART RX Error UART RX Error Counter Command received in invalid state 0 to 65 535 INT16 Table 14 MAQ20 RTD31 Range Table Range Standard Input Temperature Equivalent Counts Over Under Range Equivalent Counts Input Units per Count PT100 0 Default 200 C to 850 C 945 to 4016 200 C to 850 C 945 to 4016 0 2117 C PT100 1 200 C to 200 C 4016 to 4016 204 C to 204 C 4095 to 4095 0 0498 C PT100 2 100...

Page 37: ...tored at the specified address ASCII 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz INT16 16 bit integer value 0 to 65535 unless otherwise indicated Stored at a single address INT32 32 bit integer value 0 to 4294967295 unless otherwise indicated Stored at two 16 bit addresses MSB is stored at address N LSB is stored at address N 1 Module register addresses 0 to 1999 in the table be...

Page 38: ...channel bit 0 to 65 535 INT16 702 R W 1 Alarm Status High To clear a Latched alarm write a 0 to the corresponding channel bit 0 to 65 535 INT16 703 R W 1 Alarm Status High High To clear a Latched alarm write a 0 to the corresponding channel bit 0 to 65 535 INT16 704 R W 1 Alarm Enable 1 Enabled 0 Disabled See Setting Monitoring Alarms INT16 709 W 1 Save Alarm Parmeters to EEPROM Writing 1 saves th...

Page 39: ...for Ch 0 Tables 17 18 INT16 1100 R W 8 Channel 1 Data Last 8 readings for Ch 1 Tables 17 18 INT16 1110 R W 8 Channel 2 Data Last 8 readings for Ch 2 Tables 17 18 INT16 1120 R W 8 Channel 3 Data Last 8 readings for Ch 3 Tables 17 18 INT16 1130 R W 8 Channel 4 Data Last 8 readings for Ch 4 Tables 17 18 INT16 Address Range 1700 1899 Input Ranges Start Address Read Write Number of Registers Contents D...

Page 40: ... 1 Range 2 Engineering fs 32 767 to 32 768 INT16 1753 R 1 Range 2 Future Use 32 767 to 32 768 INT16 1754 R 1 Range 2 fs fs multiplier Factor 10 X 32 767 to 32 768 INT16 1755 R 1 Range 2 Engineering Units C V etc A to Z ASCII 1756 R 1 Range 2 Engineering Units C V etc A to Z ASCII 1757 R 1 Range 2 Future Use 32 767 to 32 768 INT16 1758 R 1 Range 2 Count Value of fs 32 767 to 32 768 INT16 1759 R 1 R...

Page 41: ...nd Too Long 0 to 65 535 INT16 1910 R W 1 UART RX Error UART RX Error Counter Command received in invalid state 0 to 65 535 INT16 Table 17 MAQ20 RTD41 Range Table Range Standard Input Temperature Equivalent Counts Over Under Range Equivalent Counts Input Units per Count PT100 0 Default 200 C to 850 C 945 to 4016 200 C to 850 C 945 to 4016 0 2117 C PT100 1 200 C to 200 C 4016 to 4016 204 C to 204 C ...

Page 42: ...aterial Authorization instructions and form are found on the Dataforth website at RMA Instructions and Form The information provided herein is believed to be reliable however DATAFORTH assumes no responsibility for inaccuracies or omissions DATAFORTH assumes no responsibility for the use of this information and all use of such information shall be entirely at the user s own risk Application inform...

Reviews: