18
CG-SVX04C-E4
Minimal installation water
content
The water volume is an important
parameter because it allows a stable
chilled water temperature and avoids
short cycle operation of the
compressors.
Parameters which influence the
water temperature stability
- Water loop volume.
- Load fluctuation.
- Number of capacity steps.
- Compressors rotation.
- Dead band.
- Minimum time between 2 starts of
a compressor.
Minimum water volume for a
comfort application
For comfort application we can allow
water temperature fluctuation at part
load. The parameter to take into
account is the minimum operating
time of the compressor. In order to
avoid lubrication problem on a scroll
or an hermetic reciprocating
compressor it must run at least
2 minutes (120 seconds) before it
stops.
The minimum volume can be
determined by using the following
formula
Volume = Cooling capacity x Time x
highest capacity step (%) / Specific
heat / Dead band
Minimum operating time
= 120 seconds
Specific heat = 4.18 kJ / kg
Dead band recommended = 3°C
Dead band calculation
Dead band = (Biggest compressors
step tonnage / Total tonnage)
X (Water temperature difference
entry/leaving) + allowed water loop
temperature fall
Minimum allowed temperature fall
= 1.5°C
Minimum dead band calculation
table versus the targeted water
temperature delta T
It is preferable to have a higher dead
band than the minimum
recommended.
Installation
4
5
6
1.5
4
5
6
060
15
25
2.4
3.0
3.6
1.5
3.9
4.5
5.1
080
15
30
2.0
2.5
3.0
1.5
3.5
4.0
4.5
100
25
40
2.5
3.1
3.8
1.5
4.0
4.6
5.3
120
25
45
2.2
2.8
3.3
1.5
3.7
4.3
4.8
125
25
50
2.0
2.5
3.0
1.5
3.5
4.0
4.5
130
15
50
1.2
1.5
1.8
1.5
2.7
3.0
3.3
160
15
60
1.0
1.3
1.5
1.5
2.5
2.8
3.0
180
20
70
1.1
1.4
1.7
1.5
2.6
2.9
3.2
210
25
80
1.3
1.6
1.9
1.5
2.8
3.1
3.4
240
30
90
1.3
1.7
2.0
1.5
2.8
3.2
3.5
260
25
100
1.0
1.3
1.5
1.5
2.5
2.8
3.0
Unit
size
Bigger
Compressor
tonnage
step
Total unit
Tonnage
Compressor step
temperature fall
versus Delta T water
loop
Minimum
recommended
water loop
temperature
fall
Dead Band
minimum versus
delta T water
loop
Summary of Contents for EWAP/EWYP 060-260
Page 212: ...1 2 3 Daikin EWAP EWYP 212 CG SVX04C EL...
Page 213: ...CG SVX04C EL 213 Daikin 3 7 Daikin...
Page 214: ...214 CG SVX04C EL Daikin...
Page 215: ...CG SVX04C EL 215 212 216 225 225 225 225 228 230 230 230 232 E 232 237 237 237 238 239 240...
Page 225: ...Daikin 5 I MAX 4 060 6 075 260 8 1 2 CG SVX04C EL 225...
Page 230: ...230 CG SVX04C EL Daikin Daikin AISI 316 1 4401 Daikin Daikin J 1 2 1 2 C 8 1 2 3 1 C 2 C LP...
Page 237: ...CG SVX04C EL 237 TRACER CH532 CH532 CH532 CH532 off Daikin CH532 off Daikin megger 8 HP LP...
Page 238: ...238 CG SVX04C EL 500 megger Daikin Daikin Daikin Daikin Daikin Daikin Daikin 60 C 20000 25000...
Page 239: ...CG SVX04C EL 239 Daikin...
Page 240: ...240 CG SVX04C EL Daikin A H B H H...
Page 241: ...CG SVX04C EL 241 E H K Daikin...
Page 332: ...1 2 3 Daikin EWAP EWYP 332 CG SVX04C RU...
Page 333: ...CG SVX04C RU 333 Daikin 3 7 Daikin...
Page 334: ...334 CG SVX04C RU...
Page 335: ...CG SVX04C RU 335 332 336 345 345 345 345 348 350 350 350 352 352 357 357 357 358 359 360...
Page 345: ...Daikin 5 I MAX 4 060 6 075 260 8 1 1 2 2 CG SVX04C RU 345...
Page 350: ...350 CG SVX04C RU Daikin Daikin AISI 316 1 4401 Daikin Daikin 1 2 1 2 C 8 8 1 2 3 1 2 C...
Page 352: ...352 CG SVX04C RU 500 2 TRACER 532 500 500 CH532 15 Daikin 2 9 11 50 Daikin 11 1 11 1 1 2...
Page 357: ...CG SVX04C RU 357 TRACER CH532 CH532 CH532 CH532 Clock Daikin CH532 Daikin 8 HP LP...
Page 358: ...358 CG SVX04C RU 5 50 00 0 Daikin Daikin Daikin Daikin Daikin 60 C 20000 25000...
Page 359: ...CG SVX04C RU 359 Daikin...
Page 360: ...360 CG SVX04C RU Daikin A A B B C C a b a b a b...
Page 361: ...CG SVX04C RU 361 D D E E F F G G H H I I J J K K a b a b Daikin a b a b...