background image

CY14E256L

Document Number: 001-06968 Rev. *F

Page 4 of 18

Hardware STORE (HSB) Operation

The CY14E256L provides the HSB pin for controlling and
acknowledging the STORE operations. The HSB pin is used to
request a hardware STORE cycle. When the HSB pin is driven
LOW, the CY14E256L conditionally initiates a STORE operation
after t

DELAY

. An actual STORE cycle only begins if a WRITE to

the SRAM takes place since the last STORE or RECALL cycle.
The HSB pin also acts as an open drain driver that is internally
driven LOW to indicate a busy condition, while the STORE
(initiated by any means) is in progress. Pull up this pin with an
external 10K ohm resistor to V

CAP 

if HSB is used as a driver.

SRAM READ and WRITE operations, that are in progress when
HSB is driven LOW by any means, are given time to complete
before the STORE operation is initiated. After HSB goes LOW,
the CY14E256L continues SRAM operations for t

DELAY

. During

t

DELAY

, multiple SRAM READ operations take place. If a WRITE

is in progress when HSB is pulled LOW, it allows a time, t

DELAY

to complete. However, any SRAM WRITE cycles requested after
HSB goes LOW are inhibited until HSB returns HIGH.

During any STORE operation, regardless of how it is initiated,
the CY14E256L continues to drive the HSB pin LOW, releasing
it only when the STORE is complete. After completing the
STORE operation, the CY14E256L remains disabled until the
HSB pin returns HIGH.

If HSB is not used, it is left unconnected.

Hardware RECALL (Power Up)

During power up or after any low power condition (V

CC

  <

V

RESET

), an internal RECALL request is latched. When V

CC

once again exceeds the sense voltage of V

SWITCH

, a RECALL

cycle is automatically initiated and takes t

HRECALL

 to complete.

If the CY14E256L is in a WRITE

 

state at the end of power up

RECALL, the SRAM

 

data is corrupted. To help avoid this

situation, a 10 Kohm resistor is connected either between WE
and system V

CC

 or between CE and system V

CC

.

Software STORE

Data is transferred from the SRAM to the nonvolatile memory by
a software address sequence. The CY14E256L software
STORE cycle is initiated by executing sequential CE controlled
READ cycles from six specific address locations in exact order.
During the STORE cycle, an erase of the previous nonvolatile
data is first performed followed by a program of the nonvolatile
elements. When a STORE cycle is initiated, input and output are
disabled until the cycle is completed.

Because a sequence of READs from specific addresses is used
for STORE initiation, it is important that no other READ or WRITE
accesses intervene in the sequence. If they intervene, the
sequence is aborted and no STORE or RECALL takes place.

To initiate the software STORE cycle, the following READ
sequence is performed:

1. Read address 0x0E38, Valid READ

2. Read address 0x31C7, Valid READ

3. Read address 0x03E0, Valid READ

4. Read address 0x3C1F, Valid READ

5. Read address 0x303F, Valid READ

6. Read address 0x0FC0, Initiate STORE cycle

The software sequence is clocked with CE controlled READs.
When the sixth address in the sequence is entered, the STORE
cycle commences and the chip is disabled. It is important that
READ cycles and not WRITE cycles are used in the sequence.
It is not necessary that OE is LOW for a valid sequence. After the
t

STORE

 cycle time is fulfilled, the SRAM is again activated for

READ and WRITE operation.

Software RECALL

Data is transferred from the nonvolatile memory to the SRAM by
a software address sequence. A software RECALL cycle is
initiated with a sequence of READ operations in a manner similar
to the software STORE initiation. To initiate the RECALL cycle,
the following sequence of CE controlled READ operations is
performed:

1. Read address 0x0E38, Valid READ

2. Read address 0x31C7, Valid READ

3. Read address 0x03E0, Valid READ

4. Read address 0x3C1F, Valid READ

5. Read address 0x303F, Valid READ

6. Read address 0x0C63, Initiate RECALL cycle

Internally, RECALL is a two step procedure. First, the SRAM data
is cleared, and then the nonvolatile information is transferred into
the SRAM cells. After the t

RECALL

 cycle time, the SRAM is once

again ready for READ and WRITE operations. The RECALL
operation does not alter the data in the nonvolatile elements. The
nonvolatile data can be recalled an unlimited number of times.

Figure 3.   AutoStore Inhibit Mode

[+] Feedback 

Summary of Contents for CY14E256L

Page 1: ...fast static RAM with a nonvolatile element in each memory cell The embedded nonvolatile elements incorporate QuantumTrap technology producing the world s most reliable nonvolatile memory The SRAM provides unlimited read and write cycles while independent nonvolatile data resides in the highly reliable QuantumTrap cell Data transfers from the SRAM to the nonvolatile elements the STORE operation tak...

Page 2: ... the chip When HIGH deselects the chip OE G Input Output Enable Active LOW The active LOW OE input enables the data output buffers during read cycles Deasserting OE HIGH causes the IO pins to tri state VSS Ground Ground for the Device The device is connected to ground of the system VCC Power Supply Power Supply Inputs to the Device HSB Input or Output Hardware Store Busy HSB When LOW this output i...

Page 3: ...3 AutoStore on device power down AutoStore operation is a unique feature of QuantumTrap technology and is enabled by default on the CY14E256L During normal operation the device draws current from VCC to charge a capacitor connected to the VCAP pin This stored charge is used by the chip to perform a single STORE operation If the voltage on the VCC pin drops below VSWITCH the part automatically disc...

Page 4: ... software STORE cycle is initiated by executing sequential CE controlled READ cycles from six specific address locations in exact order During the STORE cycle an erase of the previous nonvolatile data is first performed followed by a program of the nonvolatile elements When a STORE cycle is initiated input and output are disabled until the cycle is completed Because a sequence of READs from specif...

Page 5: ...are only initiated by explicit request using either the software sequence or the HSB pin Low Average Active Power CMOS technology provides the CY14E256L the benefit of drawing significantly less current when it is cycled at times longer than 50 ns Figure 4 shows the relationship between ICC and READ or WRITE cycle time Worst case current consumption is shown for both CMOS and TTL input levels comm...

Page 6: ...s to meet this requirementandnotexceedthe maximumVCAP valuebecause the higher inrush currents may reduce the reliability of the internal pass transistor Customers that want to use a larger VCAP value to make sure there is extra store charge should discuss their VCAP size selection with Cypress to understand any impact on the VCAP voltage level at the end of a tRECALL period Table 1 Hardware Mode S...

Page 7: ...rcial 97 80 70 mA mA Industrial 100 85 70 mA mA mA ICC2 Average VCC Current during STORE All Inputs Do Not Care VCC Max Average current for duration tSTORE 3 mA ICC3 Average VCC Current at tRC 200 ns 5V 25 C Typical WE VCC 0 2V All other inputs cycling Dependent on output loading and cycle rate Values obtained without output loads 10 mA ICC4 Average VCAP Current during AutoStore Cycle All Inputs D...

Page 8: ...following table the thermal resistance parameters are listed 8 Parameter Description Test Conditions 32 SOIC 32 CDIP Unit ΘJA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 35 45 TBD C W ΘJC Thermal Resistance Junction to Case 13 26 TBD C W Figure 6 AC Test Loads AC Test Conditions DC Electrical Char...

Page 9: ...Active 5 5 5 ns tHZCE 11 tEHQZ Chip Disable to Output Inactive 10 13 15 ns tLZOE 11 tGLQX Output Enable to Output Active 0 0 0 ns tHZOE 11 tGHQZ Output Disable to Output Inactive 10 13 15 ns tPU 8 tELICCH Chip Enable to Power Active 0 0 0 ns tPD 8 tEHICCL Chip Disable to Power Standby 25 35 45 ns Switching Waveforms Figure 7 SRAM Read Cycle 1 Address Controlled 9 10 Figure 8 SRAM Read Cycle 2 CE a...

Page 10: ...Write 0 0 0 ns tHA tWHAX tEHAX Address Hold After End of Write 0 0 0 ns tHZWE 11 12 tWLQZ Write Enable to Output Disable 10 13 15 ns tLZWE 11 tWHQX Output Active After End of Write 5 5 5 ns Switching Waveforms Figure 9 SRAM Write Cycle 1 WE Controlled 13 14 Figure 10 SRAM Write Cycle 2 CE Controlled 13 14 tWC tSCE tHA tAW tSA tPWE tSD tHD tHZWE tLZWE ADDRESS CE WE DATA IN DATA OUT DATA VALID HIGH ...

Page 11: ...Voltage Trigger Level 4 0 4 5 V VRESET Low Voltage Reset Level 3 6 V tVCCRISE VCC Rise Time 150 μs tVSBL 13 Low Voltage Trigger VSWITCH to HSB low 300 ns Switching Waveforms Figure 11 AutoStore Power Up RECALL WE Notes 15 tHRECALL starts from the time VCC rises above VSWITCH 16 CE and OE low and WE high for output behavior 17 HSB is asserted low for 1us when VCAP drops through VSWITCH If an SRAM W...

Page 12: ... ns tHACE 18 19 tELAX Address Hold Time 20 20 20 ns tRECALL RECALL Duration 20 20 20 μs Switching Waveforms Figure 12 CE Controlled Software STORE RECALL Cycle 19 tRC tRC tSA tSCE tHACE tSTORE tRECALL DATA VALID DATA VALID 6 S S E R D D A 1 S S E R D D A HIGH IMPEDANCE ADDRESS CE OE DQ DATA Notes 18 The software sequence is clocked on the falling edge of CE without involving OE double clocking abo...

Page 13: ...n CY14E256L Unit Min Max tDHSB 16 20 tRECOVER tHHQX Hardware STORE High to Inhibit Off 700 ns tPHSB tHLHX Hardware STORE Pulse Width 15 ns tHLBL Hardware STORE Low to STORE Busy 300 ns Switching Waveforms Figure 13 Hardware STORE Cycle Note 20 tDHSB is only applicable after tSTORE is complete Feedback ...

Page 14: ...l 45 CY14E256L SZ45XCT 51 85127 32 pin SOIC 300 mil Commercial CY14E256L SZ45XC 51 85127 32 pin SOIC 300 mil CY14E256L SZ45XIT 51 85127 32 pin SOIC 300 mil Industrial CY14E256L SZ45XI 51 85127 32 pin SOIC 300 mil CY14E256L D45XI 001 51694 32 pin CDIP 300 mil All parts are Pb free The above table contains Final information Please contact your local Cypress sales representative for availability of t...

Page 15: ...SIONS IN INCHES MM MIN MAX 0 292 7 416 0 299 7 594 0 405 10 287 0 419 10 642 0 050 1 270 TYP 0 090 2 286 0 100 2 540 0 004 0 101 0 0100 0 254 0 006 0 152 0 012 0 304 0 021 0 533 0 041 1 041 0 026 0 660 0 032 0 812 0 004 0 101 REFERENCE JEDEC MO 119 PART S32 3 STANDARD PKG SZ32 3 LEAD FREE PKG 0 014 0 355 0 020 0 508 0 810 20 574 0 822 20 878 51 85127 A Feedback ...

Page 16: ...CY14E256L Document Number 001 06968 Rev F Page 16 of 18 Figure 15 32 Pin 300 Mil CDIP 001 51694 Package Diagram continued 001 51694 Feedback ...

Page 17: ...taining to OE controlled Software STORE and RECALL operation Changed the address locations of the software STORE RECALL com mand Updated Part Nomenclature Table and Ordering Information Table D 1349963 See ECN UHA SFV Changed from Preliminary to Final Updated AC Test Conditions Updated Ordering Information Table E 2427986 See ECN GVCH Move to external web F 2606744 02 19 09 GVCH PYRS Updated Featu...

Page 18: ...or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED W...

Reviews: