Cypress Semiconductor MoBL-USB CY7C68053 Specification Sheet Download Page 8

CY7C68053

Document # 001-06120 Rev *F

Page 8 of 39

3.12.6

Default High-Speed Alternate Settings

3.13

External FIFO Interface

The architecture, control signals, and clock rates are

presented in this section.

3.13.1

Architecture

The FX2LP18 slave FIFO architecture has eight 512-byte

blocks in the endpoint RAM that directly serve as FIFO

memories and are controlled by FIFO control signals (such as

IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags). 
In operation, some of the eight RAM blocks fill or empty from

the SIE while the others are connected to the IO transfer logic.

The transfer logic takes two forms: the GPIF for internally

generated control signals or the slave FIFO interface for exter-

nally controlled transfers. 

3.13.2

Master/Slave Control Signals

The FX2LP18 endpoint FIFO’s are implemented as eight

physically distinct 256x16 RAM blocks. The 8051/SIE can

switch any of the RAM blocks between two domains, the USB

(SIE) domain and the 8051-IO Unit domain. This switching is

instantaneous, giving zero transfer time between ‘USB FIFO’s’

and ‘Slave FIFO’s.’ Since they are physically the same

memory, no bytes are actually transferred between buffers. 
At any given time, some RAM blocks are filling and emptying

with USB data under SIE control, while other RAM blocks are

available to the 8051 and/or the IO control unit. The RAM

blocks operate as single port in the USB domain, and dual port

in the 8051-IO domain. The blocks can be configured as

single, double, triple, or quad buffered as previously shown.
The IO control unit implements either an internal master (M for

master) or external master (S for Slave) interface.
In Master (M) mode, the GPIF internally controls

FIFOADR[1:0] to select a FIFO. The two RDY pins can be

used as flag inputs from an external FIFO or other logic. The

GPIF can be run from either an internally derived clock or

externally supplied clock (IFCLK), at a rate that transfers data

up to 96 Megabytes/s (48 MHz IFCLK with 16-bit interface).

In Slave (S) mode, the FX2LP18 accepts either an internally

derived clock or externally supplied clock (IFCLK, maximum

frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE,

PKTEND signals from external logic. When using an external

IFCLK, the external clock must be present before switching to

the external clock with the IFCLKSRC bit. Each endpoint can

individually be selected for byte or word operation by an

internal configuration bit, and a Slave FIFO Output Enable

signal (SLOE) enables data of the selected width. External

logic must insure that the output enable signal is inactive when

writing data to a slave FIFO. The slave interface can also

operate asynchronously, where the SLRD and SLWR signals

act directly as strobes, rather than a clock qualifier as in

synchronous mode. The signals SLRD, SLWR, SLOE and

PKTEND are gated by the signal SLCS#.

3.13.3

GPIF and FIFO Clock Rates

An 8051 register bit selects one of two frequencies for the inter-

nally supplied interface clock: 30 MHz and 48 MHz. Alterna-

tively, an externally supplied clock of 5 MHz – 48 MHz feeding

the IFCLK pin can be used as the interface clock. IFCLK can

be configured to function as an output clock when the GPIF

and FIFO’s are internally clocked. An output enable bit in the

IFCONFIG register turns this clock output off. Another bit

within the IFCONFIG register will invert the IFCLK signal

whether internally or externally sourced. 

3.14

GPIF

The GPIF is a flexible 8- or 16-bit parallel interface driven by a

user programmable finite state machine. It allows the

CY7C68053 to perform local bus mastering, and can

implement a wide variety of protocols such as ATA interface,

parallel printer port, and Utopia.
The GPIF has three programmable control outputs (CTL), and

two general purpose ready inputs (RDY). The data bus width

can be 8 or 16 bits. Each GPIF vector defines the state of the

control outputs, and determines what state a ready input (or

multiple inputs) must be before proceeding. The GPIF vector

can be programmed to advance a FIFO to the next data value,

advance an address, and so on. A sequence of the GPIF

vectors make up a single waveform that is executed to perform

the desired data move between the FX2LP18 and the external

device.

Notes

5.

Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.

Table 3-5.  Default High-Speed Alternate Settings

[3, 4]

Alternate Setting

0

1

2

3

ep0

64

64

64

64

ep1out

0

512 bulk

[5]

64 int

64 int

ep1in

0

512 bulk

[5]

64 int

64 int

ep2

0

512 bulk out (2×)

512 int out (2×)

512 iso out (2×)

ep4

0

512 bulk out (2×)

512 bulk out (2×)

512 bulk out (2×)

ep6

0

512 bulk in (2×)

512 int in (2×)

512 iso in (2×)

ep8

0

512 bulk in (2×)

512 bulk in (2×)

512 bulk in (2×)

[+] Feedback 

Summary of Contents for MoBL-USB CY7C68053

Page 1: ...ocks per instruction cycle Three counter timers Expanded interrupt system Two data pointers 1 8V core operation 1 8V 3 3V IO operation Vectored USB interrupts and GPIF FIFO interrupts Separate data bu...

Page 2: ...s and documentation For more infor mation visit http www cypress com 3 0 Functional Overview The functionality of this chip is described in the sections below 3 1 USB Signaling Speed FX2LP18 operates...

Page 3: ...t the firmware sets DISCON to 1 To reconnect the firmware clears DISCON to 0 Before reconnecting the firmware sets or clears the RENUM bit to indicate whether the firmware or the Default USB Device ha...

Page 4: ...h speed operation 7 18 EP0ACK FX2LP18 ACK d the CONTROL Handshake 8 1C Reserved 9 20 EP0 IN EP0 IN ready to be loaded with data 10 24 EP0 OUT EP0 OUT has USB data 11 28 EP1 IN EP1 IN ready to be loade...

Page 5: ...3 WU2 pin The second wakeup pin WU2 can also be configured as a general purpose IO pin This allows a simple external R C network to be used as a periodic wakeup source Note that WAKEUP is by default a...

Page 6: ...ochronous EP4 and EP8 can be double buffered while EP2 and 6 can be double triple or quad buffered For high speed endpoint configuration options see Figure 3 5 3 12 3 Set up Data Buffer A separate 8 b...

Page 7: ...N EP1 OUT Figure 3 5 Endpoint Configuration 1024 1024 EP6 1024 512 512 EP8 512 512 EP6 512 512 512 512 EP2 512 512 EP4 512 512 EP2 512 512 EP4 512 512 EP2 512 512 EP4 512 512 EP2 512 512 512 512 EP2 5...

Page 8: ...clock with the IFCLKSRC bit Each endpoint can individually be selected for byte or word operation by an internal configuration bit and a Slave FIFO Output Enable signal SLOE enables data of the selec...

Page 9: ...The core has the ability to directly edit the data contents of the internal 16 kByte RAM and of the internal 512 byte scratch pad RAM via a vendor specific command This capability is normally used whe...

Page 10: ...he signals on the right edge of the diagram The 8051 selects the interface mode using the IFCONFIG 1 0 register bits Port mode is the power on default configuration Table 3 6 Strap Boot EEPROM Address...

Page 11: ...2 CY7C68053 56 pin VFBGA Pin Assignment Top view 1 2 3 4 5 6 7 8 A B C D E F G H 1A 2A 3A 4A 5A 6A 7A 8A 1B 2B 3B 4B 5B 6B 7B 8B 1C 2C 3C 4C 5C 6C 7C 8C 1D 2D 7D 8D 1E 2E 7E 8E 1F 2F 3F 4F 5F 6F 7F 8F...

Page 12: ...other clock source 2C XTALOUT Output N A Crystal Output Connect this signal to a 24 MHz parallel resonant funda mental mode crystal and load capacitor to GND If an external clock is used to drive XTAL...

Page 13: ...bus 4F PB1 or FD 1 I O Z I PB1 Multiplexed pin whose function is selected by the following bits IFCONFIG 1 0 PB1 is a bidirectional IO port pin FD 1 is the bidirectional FIFO GPIF data bus 4H PB2 or F...

Page 14: ...ted by the IFCONFIG 1 0 and EPxFIFOCFG 0 wordwide bits FD 15 is the bidirectional FIFO GPIF data bus 1A RDY0 or SLRD Input N A Multiplexed pin whose function is selected by the following bits IFCONFIG...

Page 15: ...quired 3G SDA OD Z Data for the I2 C interface Connect to VCC_IO or VCC with a 2 2K 10K pull up resistor An I2 C peripheral is required 5A VCC_IO Power N A VCC Connect this pin to 1 8V to 3 3V power s...

Page 16: ...0 TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr E612 1 EP2CFG Endpoint 2 Configuration VALID DIR TYPE1 TYPE0 SIZE 0 BUF1 BUF0 10100010 bbbbbrbb E613 1 EP4CFG Endpoint 4 Configuration VALID DIR TYPE1 TYPE0 0...

Page 17: ...slave FIFO Programmable Flag H DECIS PKTSTAT 0 OUT PFC10 OUT PFC9 0 0 PFC8 00001000 bbrbbrrb E637 H S 1 EP8FIFOPFL 10 Endpoint 8 slave FIFO Programmable Flag L PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0...

Page 18: ...CRC5 CRC4 CRC3 CRC2 CRC1 CRC0 10111010 RW E67F 1 UDMACRC QUALIFIER UDMA CRC Qualifier QENABLE 0 0 0 QSTATE QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb USB CONTROL E680 1 USBCS USB Control Status HSM...

Page 19: ...Data Pointer high address byte A15 A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW E6B4 1 SUDPTRL Set up Data Pointer low address byte A7 A6 A5 A4 A3 A2 A1 0 xxxxxxx0 bbbbbbbr E6B5 1 SUDPTRCTL Set up Data Point...

Page 20: ...x x x x x x x xxxxxxxx W 3 Reserved E6F0 1 XGPIFSGLDATH GPIF Data H 16 bit mode only D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW E6F1 1 XGPIFSGLDATLX Read Write GPIF Data L trigger transaction D7 D6 D5...

Page 21: ...upt 2 clear x x x x x x x x xxxxxxxx W A2 1 Reserved x x x x x x x x xxxxxxxx W A3 5 Reserved A8 1 IE Interrupt Enable bit addressable EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 00000000 RW A9 1 Reserved AA 1 EP2...

Page 22: ...d D8 1 EICON 12 External Interrupt Control SMOD1 1 ERESI RESI INT6 0 0 0 01000000 RW D9 7 Reserved E0 1 ACC Accumulator bit address able D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW E1 7 Reserved E8 1 EIE 12 E...

Page 23: ...e SCL and SDA pins which are 3 3V tolerant DC Voltage Applied to Outputs in High Z State 0 5V to VCC 0 5V Maximum Power Dissipation From AVcc Supply 90 mW From IO Supply 36 mW From Core Supply 95 mW S...

Page 24: ...Voltage HIGH IOUT 4 mA VCC_IO 0 4 V VOL Output LOW Voltage IOUT 4 mA 0 4 V IOH Output Current HIGH 4 mA IOL Output Current LOW 4 mA CIN Input Pin Capacitance Except D D 10 pF D D 15 pF ISUSP Suspend...

Page 25: ...Clock Set up Time 9 2 ns tDAH GPIF Data Hold Time 0 ns tXGD Clock to GPIF Data Output Propagation Delay 11 ns tXCTL Clock to CTLX Output Propagation Delay 6 7 ns Notes 17 Dashed lines denote signals w...

Page 26: ...E Turn on to FIFO Data Valid 10 5 ns tOEoff SLOE Turn off to FIFO Data Hold 2 15 10 5 ns tXFLG Clock to FLAGS Output Propagation Delay 9 5 ns tXFD Clock to FIFO Data Output Propagation Delay 11 ns Tab...

Page 27: ...ronous parameter values use internal IFCLK setting at 48 MHz Table 9 5 Slave FIFO Asynchronous Read Parameters 20 Parameter Description Min Max Unit tRDpwl SLRD Pulse Width LOW 50 ns tRDpwh SLRD Pulse...

Page 28: ...ck Set up Time 18 1 ns tWRH Clock to SLWR Hold Time 0 ns tSFD FIFO Data to Clock Set up Time 10 64 ns tFDH Clock to FIFO Data Hold Time 0 ns tXFLG Clock to FLAGS Output Propagation Time 9 5 ns Table 9...

Page 29: ...opagation Delay 70 ns FLAGS tXFLG IFCLK PKTEND tSPE tPEH Figure 9 6 Slave FIFO Synchronous Packet End Strobe Timing Diagram 17 Table 9 9 Slave FIFO Synchronous Packet End Strobe Parameters with Intern...

Page 30: ...e 9 7 shows this scenario X is the value the AUTOINLEN register is set to when the IN endpoint is configured to be in auto mode Figure 9 7 shows a scenario where two packets are being committed The fi...

Page 31: ...ff SLOE Deassert to FIFO DATA Hold 2 15 10 5 ns Table 9 13 Slave FIFO Address to Flags Data Parameters Parameter Description Min Max Unit tXFLG FIFOADR 1 0 to FLAGS Output Propagation Delay 10 7 ns tX...

Page 32: ...1 0 to Clock Set up Time 25 ns tFAH Clock to FIFOADR 1 0 Hold Time 10 ns Slave FIFO Asynchronous Address Parameters 20 Parameter Description Min Max Unit tSFA FIFOADR 1 0 to SLRD SLWR PKTEND Set up T...

Page 33: ...ead condition The FIFO pointer is updated on the rising edge of the IFCLK while SLRD is asserted This starts the propagation of data from the newly addressed location to the data bus After a propagati...

Page 34: ...ated on each rising edge of IFCLK In Figure 9 15 once the four bytes are written to the FIFO SLWR is deasserted The short 4 byte packet can be committed to the host by asserting the PKTEND signal Ther...

Page 35: ...ivating edge of SLRD In Figure 9 16 data N is the first valid data read from the FIFO For data toappearonthe databusduringthe read cycle forexample SLRD is asserted SLOE MUST be in an asserted state S...

Page 36: ...so updated after tXFLG from the deasserting edge of SLWR The same sequence of events is shown for a burst write and is indicated by the timing marks of T 0 through 5 Note In the burst write mode once...

Page 37: ...8051 Address Data Busses CY7C68053 56BAXI 56 VFBGA Lead Free 16K 24 Development Tool Kit CY3687 MoBL USB FX2LP18 Development Kit TOP VIEW PIN A1 CORNER 0 50 3 50 5 00 0 10 BOTTOM VIEW 0 10 4X 3 50 5 0...

Page 38: ...rd is required to maintain signal quality Specify impedance targets ask your board vendor what they can achieve To control impedance maintain trace widths and trace spac ing to within specifications M...

Page 39: ...10 B 465471 See ECN OSG Changed the recommendation for the pull up resistors on I2 C Split Icc into 4 different values corresponding to the different voltage supplies Changed Isus typical to 20uA and...

Reviews: