background image

36-Mbit QDR™-II SRAM 2-Word

Burst Architecture

CY7C1410AV18, CY7C1425AV18
CY7C1412AV18, CY7C1414AV18

Cypress Semiconductor Corporation

198 Champion Court

San Jose

,

CA 95134-1709

408-943-2600

Document #: 38-05615 Rev. *E

 Revised June 13, 2008

Features

Separate independent read and write data ports

Supports concurrent transactions

250 MHz clock for high bandwidth

2-word burst on all accesses

Double Data Rate (DDR) interfaces on both read and write ports 
(data transferred at 500 MHz) at 250 MHz 

Two input clocks (K and K) for precise DDR timing

SRAM uses rising edges only

Two input clocks for output data (C and C) to minimize clock 
skew and flight time mismatches

Echo clocks (CQ and CQ) simplify data capture in high-speed 
systems

Single multiplexed address input bus latches address inputs 
for both read and write ports

Separate port selects for depth expansion

Synchronous internally self-timed writes

Available in x8, x9, x18, and x36 configurations 

Full data coherency, providing most current data

Core V

DD

 = 1.8V (±0.1V); IO V

DDQ

 = 1.4V to V

DD

Available in 165-Ball FBGA package (15 x 17 x 1.4 mm)

Offered in both Pb-free and non Pb-free packages

Variable drive HSTL output buffers

JTAG 1149.1 compatible test access port

Delay Lock Loop (DLL) for accurate data placement

Configurations

CY7C1410AV18 – 4M x 8

CY7C1425AV18 – 4M x 9

CY7C1412AV18 – 2M x 18

CY7C1414AV18 – 1M x 36

Functional Description

The CY7C1410AV18, CY7C1425AV18, CY7C1412AV18, and
CY7C1414AV18 are 1.8V Synchronous Pipelined SRAMs,
equipped with QDR-II architecture. QDR-II architecture consists
of two separate ports: the read port and the write port to access
the memory array. The read port has data outputs to support read
operations and the write port has data inputs to support write
operations. QDR-II architecture has separate data inputs and
data outputs to completely eliminate the need to “turn-around”
the data bus required with common IO devices. Access to each
port is accomplished through a common address bus. The read
address is latched on the rising edge of the K clock and the write
address is latched on the rising edge of the K clock. Accesses to
the QDR-II read and write ports are completely independent of
one another. To maximize data throughput, both read and write
ports are provided with DDR interfaces. Each address location
is associated with two 8-bit words (CY7C1410AV18), 9-bit words
(CY7C1425AV18), 18-bit words (CY7C1412AV18), or 36-bit
words (CY7C1414AV18) that burst sequentially into or out of the
device. Because data can be transferred into and out of the
device on every rising edge of both input clocks (K and K and C
and C), memory bandwidth is maximized while simplifying
system design by eliminating bus “turn-arounds.”

Depth expansion is accomplished with port selects, which
enables each port to operate independently.

All synchronous inputs pass through input registers controlled by
the K or K input clocks. All data outputs pass through output
registers controlled by the C or C (or K or K in a single clock
domain) input clocks. Writes are conducted with on-chip
synchronous self-timed write circuitry.

Selection Guide

Description

250 MHz

200 MHz

167 MHz

Unit

Maximum Operating Frequency 

250

200

167

MHz

Maximum Operating Current 

x8

800

700

620

mA

x9

800

700

620

x18

850

725

650

x36

1000

850

740

[+] Feedback 

Summary of Contents for CY7C1410AV18

Page 1: ...two separate ports the read port and the write port to access the memory array The read port has data outputs to support read operations and the write port has data inputs to support write operations...

Page 2: ...d Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 8 21 16 8 NWS 1 0 VREF Write Add Decode Write Reg 8 A 20 0 21 CQ CQ DOFF Q 7 0 8 8 Write Reg C C 2M x 8 Array 8 2M x 9 Array CLK A 20 0 Ge...

Page 3: ...RPS WPS Control Logic Address Register Reg Reg Reg 18 20 36 18 BWS 1 0 VREF Write Add Decode Write Reg 18 A 19 0 20 CQ CQ DOFF Q 17 0 18 18 Write Reg C C 1M x 18 Array 18 512K x 36 Array CLK A 18 0 Ge...

Page 4: ...DQ VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1425AV18 4M x 9 1 2 3 4 5 6 7 8...

Page 5: ...NC D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1414AV18 1M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M NC 72M WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A...

Page 6: ...for CY7C1410AV18 4M x 9 2 arrays each of 2M x 9 for CY7C1425AV18 2M x 18 2 arrays each of 1M x 18 for CY7C1412AV18 and 1M x 36 2 arrays each of 512K x 36 for CY7C1414AV18 Therefore only 21 address in...

Page 7: ...Alternatively this pin can be connected directly to VDDQ which enables the minimum impedance mode This pin cannot be connected directly to GND or left unconnected DOFF Input DLL Turn Off Active LOW Co...

Page 8: ...between devices without the insertion of wait states in a depth expanded memory Write Operations Write operations are initiated by asserting WPS active at the rising edge of the positive input clock K...

Page 9: ...to K and CQ is generated with respect to K The timing for the echo clocks is shown in the Switching Characteristics on page 23 DLL These chips use a Delay Lock Loop DLL that is designed to function b...

Page 10: ...0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1410AV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY...

Page 11: ...into the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Da...

Page 12: ...edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Con...

Page 13: ...scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD pla...

Page 14: ...oller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN...

Page 15: ...GH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instr...

Page 16: ...IH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figu...

Page 17: ...ruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO T...

Page 18: ...8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15...

Page 19: ...K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies dow...

Page 20: ...HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Vol...

Page 21: ...20 x36 475 200MHz x8 350 mA x9 350 x18 370 x36 420 167MHz x8 330 mA x9 330 x18 345 x36 390 AC Electrical Characteristics Over the Operating Range 11 Parameter Description Test Conditions Min Typ Max U...

Page 22: ...tion to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 17 2 C W JC Thermal Resistance Junction to Case 3 2 C W Figure...

Page 23: ...gle Clock Mode to Data Valid 0 45 0 45 0 50 ns tDOH tCHQX Data Output Hold after Output C C Clock Rise Active to Active 0 45 0 45 0 50 ns tCCQO tCHCQV C C Clock Rise to Echo Clock Valid 0 45 0 45 0 50...

Page 24: ...D50 D51 D61 D31 D11 D10 D60 Q C C DON T CARE UNDEFINED t CQ CQ tKHCH tCO tKHCH tCLZ CHZ tKH tKL Q00 Q01 Q20 tKHKH tCYC Q21 Q40 Q41 tCQD tDOH tCCQO tCQOH tCCQO tCQOH tCQDOH Notes 26 Q00 refers to outp...

Page 25: ...Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1425AV18 250BZI CY7C1412AV18 250BZI CY7C1414AV18 250BZI CY7C1410AV18 250BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb...

Page 26: ...8 167BZXC CY7C1410AV18 167BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1425AV18 167BZI CY7C1412AV18 167BZI CY7C1414AV18 167BZI CY7C1410AV18 167BZXI 51 85195 165 Bal...

Page 27: ...0 25 M C A B 0 05 M C B A 0 15 4X 0 35 0 06 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4...

Page 28: ...Power up sequence and Wave form on page 19 Added foot notes 13 14 15 on page 19 Replaced Three state with Tri state Changed the description of IX from Input Load Current to Input Leakage Current on pa...

Page 29: ...presentation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGA...

Reviews: