background image

CY7C1410AV18, CY7C1425AV18
CY7C1412AV18, CY7C1414AV18

Document #: 38-05615 Rev. *E

Page 23 of 29

Switching Characteristics

 

Over the Operating Range 

[20, 21]

Cypress

Parameter

Consortium

Parameter

Description

250 MHz

200 MHz

167 MHz

Unit

Min

Max

Min

Max

Min

Max

t

POWER

V

DD

(Typical) to the First Access 

[22]

1

1

1

ms

t

CYC

t

KHKH

K Clock and C Clock Cycle Time

4.0

8.4

5.0

8.4

6.0

8.4

ns

t

KH

t

KHKL

Input Clock (K/K and C/C)  HIGH

1.6

2.0

2.4

ns

t

KL

t

KLKH

Input Clock (K/K and C/C) LOW

1.6

2.0

2.4

ns

t

KHKH

t

KHKH

K Clock Rise to K Clock Rise and C to C Rise 
(rising edge to rising edge)

1.8

2.2

2.7

ns

t

KHCH

t

KHCH

K/K Clock Rise to C/C Clock Rise (rising edge to rising edge)

0

1.8

0

2.2

0

2.7

ns

Setup Times

t

SA

t

AVKH 

Address Setup to (K/K) Clock Rise

0.35

0.4

0.5

ns

t

SC

t

IVKH

Control Setup to K Clock Rise (RPS, WPS)

0.35

0.4

0.5

ns

t

SCDDR

t

IVKH

DDR Control Setup to Clock (K/K) Rise 
(BWS

0

, BWS

1

, BWS

3

, BWS

4

)

0.35

0.4

0.5

ns

t

SD 

[23]

t

DVKH

D

[X:0]

 Setup to Clock (K/K)  Rise

0.35

0.4

0.5

ns

Hold Times

t

HA

t

KHAX

Address Hold after (K/K) Clock Rise

0.35

0.4

0.5

ns

t

HC

t

KHIX

Control Hold after K Clock Rise (RPS, WPS)

0.35

0.4

0.5

ns

t

HCDDR

t

KHIX

DDR Control Hold after Clock (K/K) Rise 
(BWS

0

, BWS

1

, BWS

3

, BWS

4

)

0.35

0.4

0.5

ns

t

HD

t

KHDX

D

[X:0]

 Hold after Clock (K/K) Rise

0.35

0.4

0.5

ns

Output Times

t

CO

t

CHQV

C/C Clock Rise (or K/K in Single Clock Mode) to Data Valid

0.45

0.45

0.50

ns

t

DOH

t

CHQX

Data Output Hold after Output C/C Clock Rise 
(Active to Active)

–0.45

–0.45

–0.50

ns

t

CCQO

t

CHCQV

C/C Clock Rise to Echo Clock Valid

0.45

0.45

0.50

ns

t

CQOH

t

CHCQX

Echo Clock Hold after C/C Clock Rise 

–0.45

–0.45

–0.50

ns

t

CQD

t

CQHQV 

Echo Clock High to Data Valid

0.30

0.35

0.40

ns

t

CQDOH

t

CQHQX

Echo Clock High to Data Invalid

–0.30

–0.35

–0.40

ns

t

CHZ

t

CHQZ

Clock (C/C) Rise to High-Z (Active to High-Z) 

[24, 25]

0.45

0.45

0.50

ns

t

CLZ

t

CHQX1

Clock (C/C) Rise to Low-Z 

[24, 25]

–0.45

–0.45

–0.50

ns

DLL Timing

t

KC Var

t

KC Var

Clock Phase Jitter

0.20

0.20

0.20

ns

t

KC lock

t

KC lock

DLL Lock Time (K, C)

1024

1024

1024

Cycles

t

KC Reset

t

KC Reset

K Static to DLL Reset

30

30

30

ns

Notes

21. When a part with a maximum frequency above 167 MHz is operating at a lower clock frequency, it requires the input timing of the frequency range in which it is being 

operated and outputs data with the output timings of that frequency range. 

22. This part has a voltage regulator internally; t

POWER

 is the time that the power is supplied above V

DD

 minimum initially before a read or write operation can be initiated.

23. For D2 data signal on CY7C1425AV18 device, t

SD

 is 0.5 ns for 200 MHz, and 250 MHz frequencies.

24. t

CHZ

, t

CLZ

, are specified with a load capacitance of 5 pF as in part (b) of 

AC Test Loads and Waveforms

 on page 22. Transition is measured ± 100 mV from steady 

state voltage.

25. At any voltage and temperature t

CHZ

 is less than t

CLZ

 and t

CHZ

 less than t

CO

[+] Feedback 

Summary of Contents for CY7C1410AV18

Page 1: ...two separate ports the read port and the write port to access the memory array The read port has data outputs to support read operations and the write port has data inputs to support write operations...

Page 2: ...d Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 8 21 16 8 NWS 1 0 VREF Write Add Decode Write Reg 8 A 20 0 21 CQ CQ DOFF Q 7 0 8 8 Write Reg C C 2M x 8 Array 8 2M x 9 Array CLK A 20 0 Ge...

Page 3: ...RPS WPS Control Logic Address Register Reg Reg Reg 18 20 36 18 BWS 1 0 VREF Write Add Decode Write Reg 18 A 19 0 20 CQ CQ DOFF Q 17 0 18 18 Write Reg C C 1M x 18 Array 18 512K x 36 Array CLK A 18 0 Ge...

Page 4: ...DQ VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1425AV18 4M x 9 1 2 3 4 5 6 7 8...

Page 5: ...NC D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1414AV18 1M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M NC 72M WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A...

Page 6: ...for CY7C1410AV18 4M x 9 2 arrays each of 2M x 9 for CY7C1425AV18 2M x 18 2 arrays each of 1M x 18 for CY7C1412AV18 and 1M x 36 2 arrays each of 512K x 36 for CY7C1414AV18 Therefore only 21 address in...

Page 7: ...Alternatively this pin can be connected directly to VDDQ which enables the minimum impedance mode This pin cannot be connected directly to GND or left unconnected DOFF Input DLL Turn Off Active LOW Co...

Page 8: ...between devices without the insertion of wait states in a depth expanded memory Write Operations Write operations are initiated by asserting WPS active at the rising edge of the positive input clock K...

Page 9: ...to K and CQ is generated with respect to K The timing for the echo clocks is shown in the Switching Characteristics on page 23 DLL These chips use a Delay Lock Loop DLL that is designed to function b...

Page 10: ...0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1410AV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY...

Page 11: ...into the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Da...

Page 12: ...edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Con...

Page 13: ...scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD pla...

Page 14: ...oller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN...

Page 15: ...GH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instr...

Page 16: ...IH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figu...

Page 17: ...ruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO T...

Page 18: ...8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15...

Page 19: ...K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies dow...

Page 20: ...HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Vol...

Page 21: ...20 x36 475 200MHz x8 350 mA x9 350 x18 370 x36 420 167MHz x8 330 mA x9 330 x18 345 x36 390 AC Electrical Characteristics Over the Operating Range 11 Parameter Description Test Conditions Min Typ Max U...

Page 22: ...tion to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 17 2 C W JC Thermal Resistance Junction to Case 3 2 C W Figure...

Page 23: ...gle Clock Mode to Data Valid 0 45 0 45 0 50 ns tDOH tCHQX Data Output Hold after Output C C Clock Rise Active to Active 0 45 0 45 0 50 ns tCCQO tCHCQV C C Clock Rise to Echo Clock Valid 0 45 0 45 0 50...

Page 24: ...D50 D51 D61 D31 D11 D10 D60 Q C C DON T CARE UNDEFINED t CQ CQ tKHCH tCO tKHCH tCLZ CHZ tKH tKL Q00 Q01 Q20 tKHKH tCYC Q21 Q40 Q41 tCQD tDOH tCCQO tCQOH tCCQO tCQOH tCQDOH Notes 26 Q00 refers to outp...

Page 25: ...Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1425AV18 250BZI CY7C1412AV18 250BZI CY7C1414AV18 250BZI CY7C1410AV18 250BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb...

Page 26: ...8 167BZXC CY7C1410AV18 167BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1425AV18 167BZI CY7C1412AV18 167BZI CY7C1414AV18 167BZI CY7C1410AV18 167BZXI 51 85195 165 Bal...

Page 27: ...0 25 M C A B 0 05 M C B A 0 15 4X 0 35 0 06 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4...

Page 28: ...Power up sequence and Wave form on page 19 Added foot notes 13 14 15 on page 19 Replaced Three state with Tri state Changed the description of IX from Input Load Current to Input Leakage Current on pa...

Page 29: ...presentation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGA...

Reviews: