background image

PRELIMINARY

CY7C1330AV25
CY7C1332AV25

Document No: 001-07844 Rev. *A

Page 6 of 19

IEEE 1149.1 Serial Boundary Scan (JTAG)

These SRAMs incorporate a serial boundary scan test access
port (TAP) in the FBGA package. This port operates in accor-
dance with IEEE Standard 1149.1-1900 but does not have the
set of functions required for full 1149.1 compliance. The TAP
operates using JEDEC standard 1.8V I/O logic levels.

Disabling the JTAG Feature

It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied LOW
(V

SS

) to prevent clocking of the device. TDI and TMS are inter-

nally pulled up and may be unconnected. They may alternately
be connected to V

DD

 through a pull-up resistor. TDO should

be left unconnected. Upon power-up, the device will come up
in a reset state which will not interfere with the operation of the
device.

Test Access Port—Test Clock

The test clock is used only with the TAP controller. All inputs
are captured on the rising edge of TCK. All outputs are driven
from the falling edge of TCK.

Test Mode Select

The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. It is allowable to
leave this pin unconnected if the TAP is not used. The pin is
pulled up internally, resulting in a logic HIGH level.

Test Data-In (TDI)

The TDI pin is used to serially input information into the
registers and can be connected to the input of any of the
registers. The register between TDI and TDO is chosen by the
instruction that is loaded into the TAP instruction register. For
information on loading the instruction register, see the TAP
Controller State Diagram. TDI is internally pulled up and can
be unconnected if the TAP is unused in an application. TDI is
connected to the most significant bit (MSB) on any register. 

Test Data-Out (TDO)

The TDO output pin is used to serially clock data-out from the
registers. The output is active depending upon the current
state of the TAP state machine (see Instruction codes). The
output changes on the falling edge of TCK. TDO is connected
to the least significant bit (LSB) of any register.

Performing a TAP Reset

A Reset is performed by forcing TMS HIGH (VDD) for five
rising edges of TCK. This RESET does not affect the operation
of the SRAM and may be performed while the SRAM is
operating. At power-up, the TAP is reset internally to ensure
that TDO comes up in a high-Z state.

TAP Registers

Registers are connected between the TDI and TDO pins and
allow data to be scanned into and out of the SRAM test
circuitry. Only one register can be selected at a time through
the instruction registers. Data is serially loaded into the TDI pin
on the rising edge of TCK. Data is output on the TDO pin on
the falling edge of TCK. 

Instruction Register

Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the
TDI and TDO pins as shown in TAP Controller Block Diagram.
Upon power-up, the instruction register is loaded with the
IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as
described in the previous section.

When the TAP controller is in the Capture IR state, the two
least significant bits are loaded with a binary “01” pattern to
allow for fault isolation of the board level serial test path.

Bypass Register

To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between TDI
and TDO pins. This allows data to be shifted through the
SRAM with minimal delay. The bypass register is set LOW
(V

SS

) when the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all of the input and
output pins on the SRAM. Several no connect (NC) pins are
also included in the scan register to reserve pins for higher
density devices. 

The boundary scan register is loaded with the contents of the
RAM Input and Output ring when the TAP controller is in the
Capture-DR state and is then placed between the TDI and
TDO pins when the controller is moved to the Shift-DR state.
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-
tions can be used to capture the contents of the Input and
Output ring.

The Boundary Scan Order tables show the order in which the
bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected
to TDI, and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired
into the SRAM and can be shifted out when the TAP controller
is in the Shift-DR state. The ID register has a vendor code and
other information described in the Identification Register
Definitions table.

TAP Instruction Set

Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in the
Instruction Code table. Three of these instructions are listed
as RESERVED and should not be used. The other five instruc-
tions are described in detail below.

Instructions are loaded into the TAP controller during the
Shift-IR state when the instruction register is placed between
TDI and TDO. During this state, instructions are shifted
through the instruction register through the TDI and TDO pins.
To execute the instruction once it is shifted in, the TAP
controller needs to be moved into the Update-IR state.

[+] Feedback 

Summary of Contents for CY7C1330AV25

Page 1: ...d with late write operation These SRAMs can achieve speeds up to 250 MHz Each memory cell consists of six transistors Late write feature avoids an idle cycle required during the turnaround of the bus...

Page 2: ...REF VSS VSS VSS VSS M1 CE VSS OE VSS VDDQ BWSc NC VSS NC VDDQ VDD VREF VDD VSS K K BWSa WE VSS VDDQ VSS ZZ NC NC A A A0 A1 VSS VDD M2 CY7C1330AV25 512K x 36 DQc DQb A DQc DQb DQc DQc DQc DQb DQb DQa D...

Page 3: ...n HIGH DQa DQd are placed in a tri state condition The outputs are automatically tri stated during the data portion of a write sequence during the first clock when emerging from a deselected state and...

Page 4: ...ss is initiated when the following conditions are satisfied at clock rise 1 CE is asserted active and 2 the write signal WE is asserted LOW The address presented to Ax is loaded into the Address Regis...

Page 5: ...V25 WE BWd BWc BWb BWa Read 1 X X X X Write Byte 0 DQa 0 1 1 1 0 Write Byte 1 DQb 0 1 1 0 1 Write Bytes 1 0 0 1 1 0 0 Write Byte 2 DQc 0 1 0 1 1 Write Bytes 2 0 0 1 0 1 0 Write Bytes 2 1 0 1 0 0 1 Wri...

Page 6: ...CK Data is output on the TDO pin on the falling edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed b...

Page 7: ...y up to 20 MHz while the SRAM clock operates more than an order of magnitude faster Because there is a large difference in the clock frequencies it is possible that during the Capture DR state an inpu...

Page 8: ...the value at TMS at the rising edge of TCK TAP Controller State Diagram 6 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR SELECT IR SCAN CAPTUR...

Page 9: ...Clock LOW 20 ns Set up Times tTMSS TMS Set up to TCK Clock Rise 5 ns tTDIS TDI Set up to TCK Clock Rise 5 ns tCS Capture Set up to TCK Rise 5 ns Hold Times tTMSH TMS Hold after TCK Clock Rise 5 ns tT...

Page 10: ...F Z0 50 GND 1 25V 50 2 5V 0V ALL INPUT PULSES 1 25V Test Clock Test Mode Select TCK TMS Test Data In TDI Test Data Out tTCYC tTMSH tTL tTH tTMSS tTDIS tTDIH tTDOV tTDOX TDO Identification Register Def...

Page 11: ...11 Do Not Use This instruction is reserved for future use SAMPLE PRELOAD 100 Captures the Input Output ring contents Places the boundary scan register between TDI and TDO Does not affect the SRAM oper...

Page 12: ...T 27 6E 51 3G 4 6R 28 7D 52 4D 5 5T 29 6D 53 4E 6 7T 30 6A 54 4G 7 6P 31 6C 55 4H 8 7P 32 5C 56 4M 9 6N 33 5A 57 3L 10 7N 34 6B 58 1K 11 6M 35 5B 59 2K 12 6L 36 3B 60 1L 13 7L 37 2B 61 2L 14 6K 38 3A...

Page 13: ...Impedance Mode 15 VSS 0 2 V VOH3 Output HIGH Voltage IOH 6 0 mA Minimum Impedance Mode 15 VDDQ 0 4 VDDQ V VOL3 Output LOW Voltage IOL 6 0 mA Minimum Impedance Mode 15 VSS 0 4 V VIH Input HIGH Voltage...

Page 14: ...a of AC Test Loads Capacitance 17 Parameter Description Test Conditions Max Unit CIN Input Capacitance TA 25 C f 1 MHz VDD 2 5V VDDQ 1 5V 5 pF CCLK Clock Input Capacitance 6 pF CI O Input Output Capa...

Page 15: ...et Up Before CLK Rise 0 3 0 3 ns tCES Chip Select Set Up 0 3 0 3 ns Hold Times tAH Address Hold After CLK Rise 0 6 0 6 ns tDH Data Input Hold After CLK Rise 0 6 0 6 ns tWEH WE BWx Hold After CLK Rise...

Page 16: ...elect the device Any chip enable can deselect the device 25 RAx stands for Read Address X WAx Write Address X Dx stands for Data in for location X Qx stands for Data out for location X 26 CE held LOW...

Page 17: ...orms continued CLK CE tCYC tCH tCL tCES tCEH DON T CARE UNDEFINED READ WRITE READ DESELECT WRITE Deselect READ WRITE WRITE DESELECT ADDRESS WE Data In Out RA1 tAH tAS tWEStWEH tCO Q1 Out D2 In WA2 WA5...

Page 18: ...s in life support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges All product and company names mentioned in this...

Page 19: ...Document Title CY7C1330AV25 CY7C1332AV25 18 Mbit 512K x 36 1Mbit x 18 Pipelined Register Register Late Write SRAM Document Number 001 07844 REV ECN No Issue Date Orig of Change Description of Change...

Reviews: