background image

CY7C1316JV18, CY7C1916JV18
CY7C1318JV18, CY7C1320JV18

Document Number: 001-15271 Rev. *B

Page 6 of 26

Pin Definitions 

Pin Name

IO

Pin Description

DQ

[x:0]

Input Output-
Synchronous

Data Input Output Signals

. Sampled on the rising edge of K and K clocks during valid write operations. 

These pins drive out the requested data during a read operation. Valid data is driven out on the rising 
edge of both the C and C clocks during read operations or K and K when in single clock mode. When 
read access is deselected, Q

[x:0]

 are automatically tri-stated.

CY7C1316JV18 

 DQ

[7:0]

CY7C1916JV18 

 DQ

[8:0]

CY7C1318JV18 

 DQ

[17:0]

CY7C1320JV18 

 DQ

[35:0]

LD

Input-

Synchronous

Synchronous Load

. This input is brought LOW when a bus cycle sequence is defined. This definition 

includes address and read/write direction. All transactions operate on a burst of 2 data.

NWS

0

NWS

1

Input-

Synchronous

Nibble Write Select 0, 1 

− 

Active LOW

 

(CY7C1316JV18 only)

. Sampled on the rising edge of the K and 

K clocks during write operations. Used to select which nibble is written into the device during the current 
portion of the write operations. Nibbles not written remain unaltered.
NWS

0

 controls D

[3:0] 

and NWS

1

 controls D

[7:4]

.

All the Nibble Write Selects are sampled on the same edge as the data. Deselecting a Nibble Write Select 
ignores the corresponding nibble of data and it is not written into the device.

BWS

0

BWS

1

BWS

2

BWS

3

Input-

Synchronous

Byte Write Select 0, 1, 2, and 3 

− 

Active LOW

. Sampled on the rising edge of the K and K clocks during 

write operations. Used to select which byte is written into the device during the current portion of the Write 
operations. Bytes not written remain unaltered.
CY7C1916JV18 

 BWS

0

 controls D

[8:0] 

CY7C1318JV18

 −

 BWS

0

 controls D

[8:0]

 and BWS

1

 controls D

[17:9].

CY7C1320JV18

 −

 BWS

0

 controls D

[8:0]

, BWS

1

 controls D

[17:9]

, BWS

2

 controls D

[26:18]

 and BWS

3

 controls 

D

[35:27]

.

All the Byte Write Selects are sampled on the same edge as the data. Deselecting a Byte Write Select 
ignores the corresponding byte of data and it is not written into the device.

A, A0

Input-

Synchronous

Address Inputs

. These address inputs are multiplexed for both read and write operations. Internally, the 

device is organized as 2M x 8 (2 arrays each of 1M x 8) for CY7C1316JV18 and 2M x 9 (2 arrays each 
of 1M x 9) for CY7C1916JV18, 1M x 18 (2 arrays each of 512K x 18) for CY7C1318JV18, and 512K x 36 
(2 arrays each of 256K x 36) for CY7C1320JV18.

CY7C1316JV18 – Because the least significant bit of the address internally is a ‘0’, only 20 external 
address inputs are needed to access the entire memory array. 

CY7C1916JV18 – Because the least significant bit of the address internally is a ‘0’, only 20 external 
address inputs are needed to access the entire memory array. 

CY7C1318JV18 – A0 is the input to the burst counter. These are incremented internally in a linear fashion. 
20 address inputs are needed to access the entire memory array.

CY7C1320JV18 – A0 is the input to the burst counter. These are incremented internally in a linear fashion. 
19 address inputs are needed to access the entire memory array. All the address inputs are ignored when 
the appropriate port is deselected. 

R/W

Input-

Synchronous

Synchronous Read/Write Input

. When LD is LOW, this input designates the access type (read when 

R/W is HIGH, write when R/W is LOW) for the loaded address. R/W must meet the setup and hold times 
around the edge of K.

C

Input Clock

Positive Input Clock for Output Data.

 C is used in conjunction with C to clock out the read data from 

the device. C and C can be used together to deskew the flight times of various devices on the board back 
to the controller. See 

Application Example

 on page 9 for more information.

C

Input Clock

Negative Input Clock for Output Data

. C is used in conjunction with C to clock out the read data from 

the device. C and C can be used together to deskew the flight times of various devices on the board back 
to the controller. See 

Application Example

 on page 9 for more information.

K

Input Clock

Positive Input Clock Input

. The rising edge of K is used to capture synchronous inputs to the device 

and to drive out data through Q

[x:0] 

when in single clock mode. All accesses are initiated on the rising 

edge of K. 

K

Input Clock

Negative Input Clock Input

. K is used to capture synchronous data being presented to the device and 

to drive out data through Q

[x:0]

 when in single clock mode.

[+] Feedback 

[+] Feedback 

Summary of Contents for CY7C1316JV18

Page 1: ...chronous peripheral circuitry and a one bit burst counter Addresses for read and write are latched on alternate rising edges of the input K clock Write data is registered on the rising edges of both K...

Page 2: ...ter Read Add Decode Read Data Reg R W DQ 7 0 Output Logic Reg Reg Reg 8 8 16 8 NWS 1 0 VREF Write Add Decode 8 20 C C 8 LD Control CQ CQ R W DOFF 1M x 8 Array 1M x 8 Array 8 Write Reg Write Reg CLK A...

Page 3: ...Q 17 0 Output Logic Reg Reg Reg 18 18 36 18 BWS 1 0 VREF Write Add Decode 18 20 C C 18 LD Control Burst Logic A0 A 19 1 CQ CQ R W DOFF 512K x 18 Array 512K x 18 Array 19 18 Write Reg Write Reg CLK A 1...

Page 4: ...S VDDQ NC NC DQ0 M NC NC NC VSS VSS VSS VSS VSS NC NC NC N NC NC NC VSS A A A VSS NC NC NC P NC NC DQ7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1916JV18 2M x 9 1 2 3 4 5 6 7 8 9 10 11 A...

Page 5: ...C A A NC NC DQ0 R TDO TCK A A A C A A A TMS TDI CY7C1320JV18 512K x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 144M NC 36M R W BWS2 K BWS1 LD A NC 72M CQ B NC DQ27 DQ18 A BWS3 K BWS0 A NC NC DQ8 C NC NC DQ28...

Page 6: ...inputs are multiplexed for both read and write operations Internally the device is organized as 2M x 8 2 arrays each of 1M x 8 for CY7C1316JV18 and 2M x 9 2 arrays each of 1M x 9 for CY7C1916JV18 1M...

Page 7: ...Input DLL Turn Off Active LOW Connecting this pin to ground turns off the DLL inside the device The timing in the DLL turned off operation is different from that listed in this data sheet For normal o...

Page 8: ...ock rise the data presented to D 17 0 is latched and stored into the 18 bit write data register provided BWS 1 0 are both asserted active On the subsequent rising edge of the negative input clock K th...

Page 9: ...chips use a Delay Lock Loop DLL that is designed to function between 120 MHz and the specified maximum clock frequency During power up when the DOFF is tied HIGH the DLL is locked after 1024 cycles of...

Page 10: ...D 8 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1316JV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltere...

Page 11: ...into the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Da...

Page 12: ...lling edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TA...

Page 13: ...n register Once the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places...

Page 14: ...oller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN...

Page 15: ...H Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 106 0 1 2 Instru...

Page 16: ...H TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figur...

Page 17: ...uction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO Th...

Page 18: ...0 3L 7 8P 35 10E 63 1H 91 1M 8 9R 36 10D 64 1A 92 1L 9 11P 37 9E 65 2B 93 3N 10 10P 38 10C 66 3B 94 3M 11 10N 39 11D 67 1C 95 1N 12 9P 40 9C 68 1B 96 2M 13 10M 41 9D 69 3D 97 3P 14 11N 42 11B 70 3C 98...

Page 19: ...are stable take DOFF HIGH The additional 1024 cycles of clocks are required for the DLL to lock DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which i...

Page 20: ...ote 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input HIGH Voltage VREF...

Page 21: ...Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 28 51 C W JC Thermal Resistance Junction to Case 5 91 C W...

Page 22: ...45 ns tDOH tCHQX Data Output Hold after Output C C Clock Rise Active to Active 0 45 ns tCCQO tCHCQV C C Clock Rise to Echo Clock Valid 0 45 ns tCQOH tCHCQX Echo Clock Hold after C C Clock Rise 0 45 ns...

Page 23: ...tKL tCYC A0 D20 D21 D30 D31 Q00 Q11 Q01 Q10 A1 A2 A3 A4 Q41 tCCQO tCQOH tCCQO tCQOH tKL tCYC K K LD R W A DQ C C CQ CQ SA tKH tKHKH tCQD tCQDOH tCQH tCQHCQH Notes 24 Q00 refers to output from address...

Page 24: ...Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Commercial CY7C1916JV18 300BZC CY7C1318JV18 300BZC CY7C1320JV18 300BZC CY7C1316JV18 300BZXC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm P...

Page 25: ...0 05 M C B A 0 15 4X 0 35 0 06 SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M N L...

Page 26: ...urce Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as speci...

Reviews: