background image

CY7C1316JV18, CY7C1916JV18
CY7C1318JV18, CY7C1320JV18

Document Number: 001-15271 Rev. *B

Page 9 of 26

driver impedance. The value of RQ must be 5x the value of the
intended line impedance driven by the SRAM. The allowable
range of RQ to guarantee impedance matching with a tolerance
of ±15% is between 175

Ω

 and 350

Ω

with V

DDQ

= 1.5V.  The

output impedance is adjusted every 1024 cycles at power up to
account for drifts in supply voltage and temperature.

Echo Clocks

Echo clocks are provided on the DDR-II to simplify data capture
on high-speed systems. Two echo clocks are generated by the
DDR-II. CQ is referenced with respect to C and CQ is referenced
with respect to C. These are free running clocks and are synchro-
nized to the output clock of the DDR-II. In the single clock mode,
CQ is generated with respect to K and CQ is generated with
respect to K. The timing for the echo clocks is shown in 

Switching

Characteristics

 on page 22.

DLL

These chips use a Delay Lock Loop (DLL) that is designed to
function between 120 MHz and the specified maximum clock
frequency. During power up, when the DOFF is tied HIGH, the
DLL is locked after 1024 cycles of stable clock. The DLL can also
be reset by slowing or stopping the input clocks K and K for a
minimum of 30 ns. However, it is not necessary for the to specif-
ically reset the DLL to lock it to the desired frequency. The DLL
automatically locks 1024 clock cycles after a stable clock is
presented. The DLL may be disabled by applying ground to the
DOFF pin. When the DLL is turned off, the device behaves in
DDR-I mode (with one cycle latency and a longer access time).
For information refer to the application note 

DLL Considerations

in QDRII™/DDRII

.

Application Example

Figure 1

 shows two DDR-II used in an application.

Figure 1.  Application Example

Vterm = 0.75V

Vterm = 0.75V

R = 50

ohms

R = 250

ohms

LD#

C C#

R/W#

DQ
     A

K

LD#

C C#

R/W#

DQ
    A

K

SRAM#1

SRAM#2

R

 = 250ohms

BUS

MASTER

(CPU

or

ASIC)

DQ

Addresses

Cycle Start#

R/W#

Return CLK

Source CLK

Return CLK#

Source CLK#

Echo Clock1/Echo Clock#1
Echo Clock2/Echo Clock#2

ZQ

CQ/CQ#

K#

ZQ

CQ/CQ#

K#

[+] Feedback 

[+] Feedback 

Summary of Contents for CY7C1316JV18

Page 1: ...chronous peripheral circuitry and a one bit burst counter Addresses for read and write are latched on alternate rising edges of the input K clock Write data is registered on the rising edges of both K...

Page 2: ...ter Read Add Decode Read Data Reg R W DQ 7 0 Output Logic Reg Reg Reg 8 8 16 8 NWS 1 0 VREF Write Add Decode 8 20 C C 8 LD Control CQ CQ R W DOFF 1M x 8 Array 1M x 8 Array 8 Write Reg Write Reg CLK A...

Page 3: ...Q 17 0 Output Logic Reg Reg Reg 18 18 36 18 BWS 1 0 VREF Write Add Decode 18 20 C C 18 LD Control Burst Logic A0 A 19 1 CQ CQ R W DOFF 512K x 18 Array 512K x 18 Array 19 18 Write Reg Write Reg CLK A 1...

Page 4: ...S VDDQ NC NC DQ0 M NC NC NC VSS VSS VSS VSS VSS NC NC NC N NC NC NC VSS A A A VSS NC NC NC P NC NC DQ7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1916JV18 2M x 9 1 2 3 4 5 6 7 8 9 10 11 A...

Page 5: ...C A A NC NC DQ0 R TDO TCK A A A C A A A TMS TDI CY7C1320JV18 512K x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 144M NC 36M R W BWS2 K BWS1 LD A NC 72M CQ B NC DQ27 DQ18 A BWS3 K BWS0 A NC NC DQ8 C NC NC DQ28...

Page 6: ...inputs are multiplexed for both read and write operations Internally the device is organized as 2M x 8 2 arrays each of 1M x 8 for CY7C1316JV18 and 2M x 9 2 arrays each of 1M x 9 for CY7C1916JV18 1M...

Page 7: ...Input DLL Turn Off Active LOW Connecting this pin to ground turns off the DLL inside the device The timing in the DLL turned off operation is different from that listed in this data sheet For normal o...

Page 8: ...ock rise the data presented to D 17 0 is latched and stored into the 18 bit write data register provided BWS 1 0 are both asserted active On the subsequent rising edge of the negative input clock K th...

Page 9: ...chips use a Delay Lock Loop DLL that is designed to function between 120 MHz and the specified maximum clock frequency During power up when the DOFF is tied HIGH the DLL is locked after 1024 cycles of...

Page 10: ...D 8 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1316JV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltere...

Page 11: ...into the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Da...

Page 12: ...lling edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TA...

Page 13: ...n register Once the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places...

Page 14: ...oller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN...

Page 15: ...H Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 106 0 1 2 Instru...

Page 16: ...H TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figur...

Page 17: ...uction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO Th...

Page 18: ...0 3L 7 8P 35 10E 63 1H 91 1M 8 9R 36 10D 64 1A 92 1L 9 11P 37 9E 65 2B 93 3N 10 10P 38 10C 66 3B 94 3M 11 10N 39 11D 67 1C 95 1N 12 9P 40 9C 68 1B 96 2M 13 10M 41 9D 69 3D 97 3P 14 11N 42 11B 70 3C 98...

Page 19: ...are stable take DOFF HIGH The additional 1024 cycles of clocks are required for the DLL to lock DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which i...

Page 20: ...ote 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input HIGH Voltage VREF...

Page 21: ...Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 28 51 C W JC Thermal Resistance Junction to Case 5 91 C W...

Page 22: ...45 ns tDOH tCHQX Data Output Hold after Output C C Clock Rise Active to Active 0 45 ns tCCQO tCHCQV C C Clock Rise to Echo Clock Valid 0 45 ns tCQOH tCHCQX Echo Clock Hold after C C Clock Rise 0 45 ns...

Page 23: ...tKL tCYC A0 D20 D21 D30 D31 Q00 Q11 Q01 Q10 A1 A2 A3 A4 Q41 tCCQO tCQOH tCCQO tCQOH tKL tCYC K K LD R W A DQ C C CQ CQ SA tKH tKHKH tCQD tCQDOH tCQH tCQHCQH Notes 24 Q00 refers to output from address...

Page 24: ...Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Commercial CY7C1916JV18 300BZC CY7C1318JV18 300BZC CY7C1320JV18 300BZC CY7C1316JV18 300BZXC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm P...

Page 25: ...0 05 M C B A 0 15 4X 0 35 0 06 SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M N L...

Page 26: ...urce Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as speci...

Reviews: