background image

CY7C1241V18, CY7C1256V18
CY7C1243V18, CY7C1245V18

Document Number: 001-06365 Rev. *D

Page 13 of 28

IEEE 1149.1 Serial Boundary Scan (JTAG)

These SRAMs incorporate a serial boundary scan test access
port (TAP) in the FBGA package. This part is fully compliant with
IEEE Standard #1149.1-2001. The TAP operates using JEDEC
standard 1.8V IO logic levels.

Disabling the JTAG Feature

It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, tie TCK LOW (V

SS

) to

prevent device clocking. TDI and TMS are internally pulled up
and may be unconnected. They may alternatively be connected
to V

DD

 through a pull up resistor. TDO must be left unconnected.

Upon power up, the device comes up in a reset state which does
not interfere with the operation of the device.

Test Access Port – Test Clock

The test clock is used only with the TAP controller. All inputs are
captured on the rising edge of TCK. All outputs are driven from
the falling edge of TCK.

Test Mode Select

The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. It is allowable to leave
this pin unconnected if the TAP is not used. The pin is pulled up
internally, resulting in a logic HIGH level.

Test Data-In (TDI)

The TDI pin is used to serially input information into the registers
and can be connected to the input of any of the registers. The
register between TDI and TDO is chosen by the instruction that
is loaded into the TAP instruction register. For information on
loading the instruction register, see the 

“TAP Controller State

Diagram” on page 15

. TDI is internally pulled up and can be

unconnected if the TAP is unused in an application. TDI is
connected to the most significant bit (MSB) on any register. 

Test Data-Out (TDO)

The TDO output pin is used to serially clock data-out from the
registers. Whether the output is active depends upon the current
state of the TAP state machine (see 

“Instruction Codes” on

page 18

). The output changes on the falling edge of TCK. TDO

is connected to the least significant bit (LSB) of any register.

Performing a TAP Reset

A Reset is performed by forcing TMS HIGH (V

DD

) for five rising

edges of TCK. This RESET does not affect the operation of the
SRAM and may be performed while the SRAM is operating. At
power up, the TAP is reset internally to ensure that TDO comes
up in a high-Z state.

TAP Registers

Registers are connected between the TDI and TDO pins and
scan data into and out of the SRAM test circuitry. Only one
register can be selected at a time through the instruction
registers. Data is serially loaded into the TDI pin on the rising
edge of TCK. Data is output on the TDO pin on the falling edge
of TCK. 

Instruction Register

Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the TDI
and TDO pins as shown in 

“TAP Controller Block Diagram” on

page 16

. Upon power up, the instruction register is loaded with

the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as described
in the previous section.

When the TAP controller is in the Capture IR state, the two least
significant bits are loaded with a binary ‘01’ pattern to enable fault
isolation of the board level serial test path.

Bypass Register

To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between TDI
and TDO pins. This shifts data through the SRAM with minimal
delay. The bypass register is set LOW (V

SS

) when the BYPASS

instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all of the input and
output pins on the SRAM. Several no connect (NC) pins are also
included in the scan register to reserve pins for higher density
devices. 

The boundary scan register is loaded with the contents of the
RAM input and output ring when the TAP controller is in the
Capture-DR state and is then placed between the TDI and TDO
pins when the controller is moved to the Shift-DR state. The
EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can
be used to capture the contents of the input and output ring.

“Boundary Scan Order” on page 19

 shows the order in which the

bits are connected. Each bit corresponds to one of the bumps on
the SRAM package. The MSB of the register is connected to TDI,
and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired into
the SRAM and can be shifted out when the TAP controller is in
the Shift-DR state. The ID register has a vendor code and other
information described in 

“Identification Register Definitions” on

page 18

.

TAP Instruction Set

Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in 

“Instruction

Codes” on page 18

. Three of these instructions are listed as

RESERVED and must not be used. The other five instructions
are described in this section in detail.

Instructions are loaded into the TAP controller during the Shift-IR
state when the instruction register is placed between TDI and
TDO. During this state, instructions are shifted through the
instruction register through the TDI and TDO pins. To execute
the instruction after it is shifted in, the TAP controller must be
moved into the Update-IR state.

[+] Feedback 

[+] Feedback 

Summary of Contents for CY7C1241V18

Page 1: ...e QDR II architecture consists of two separate ports to access the memory array The read port has dedicated data outputs to support read operations and the write port has dedicated data inputs to supp...

Page 2: ...ister Reg Reg Reg 16 20 8 32 8 NWS 1 0 VREF Write Add Decode Write Reg 16 A 19 0 20 1M x 8 Array 1M x 8 Array 1M x 8 Array Write Reg Write Reg Write Reg 8 CQ CQ DOFF QVLD 1M x 9 Array CLK A 19 0 Gen K...

Page 3: ...Reg 36 19 18 72 18 BWS 1 0 VREF Write Add Decode Write Reg 36 A 18 0 19 512K x 18 Array 512K x 18 Array 512K x 18 Array Write Reg Write Reg Write Reg 18 CQ CQ DOFF QVLD 256K x 36 Array CLK A 17 0 Gen...

Page 4: ...C VSS NC Q2 NC NC NC VREF NC NC VDDQ NC VDDQ NC NC VDDQ VDDQ VDDQ D1 VDDQ NC Q1 NC VDDQ VDDQ NC VSS NC D0 NC TDI TMS VSS A NC A NC D2 NC ZQ NC Q0 NC NC NC NC A NC 144M CY7C1256V18 4M x 9 2 3 4 5 6 7 1...

Page 5: ...D5 NC NC VREF NC Q3 VDDQ NC VDDQ NC Q5 VDDQ VDDQ VDDQ D4 VDDQ NC Q4 NC VDDQ VDDQ NC VSS NC D2 NC TDI TMS VSS A NC A D7 D6 NC ZQ D3 Q2 D1 Q1 D0 NC A NC CY7C1245V18 1M x 36 2 3 4 5 6 7 1 A B C D E F G H...

Page 6: ...ss Inputs Sampled on the rising edge of the K clock during active read and write opera tions These address inputs are multiplexed for both read and write operations Internally the device is organized...

Page 7: ...is pin to ground turns off the DLL inside the device The timing in the DLL turned off operation is different from that listed in this data sheet For normal operation this pin can be connected to a pul...

Page 8: ...ing edge of the Positive Input Clock K This enables a seamless transition between devices without the insertion of wait states in a depth expanded memory Write Operations Write operations are initiate...

Page 9: ...generated by the QDR II CQ is referenced with respect to K and CQ is refer enced with respect to K These are free running clocks and are synchronized to the input clock of the QDR II The timing for t...

Page 10: ...D A K SRAM 4 RQ 250ohms ZQ CQ CQ Q K RPS WPS BWS D A K SRAM 1 RQ 250ohms ZQ CQ CQ Q K RPS WPS BWS RPS WPS BWS R 50ohms Vt V 2 DDQ R Notes 2 X Don t Care H Logic HIGH L Logic LOW represents rising edg...

Page 11: ...7C1241V18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1243V18 only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H L L H During the da...

Page 12: ...y the byte D 17 9 is written into the device D 8 0 and D 35 18 remain unaltered H L H H L H During the data portion of a write sequence only the byte D 17 9 is written into the device D 8 0 and D 35 1...

Page 13: ...lling edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TA...

Page 14: ...egister After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an...

Page 15: ...3V18 and CY7C1245V18 follows 11 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR SELECT IR SCAN CAPTURE IR SHIFT IR EXIT1 IR PAUSE IR EXIT2 IR U...

Page 16: ...GH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instr...

Page 17: ...MSH TMS Hold after TCK Clock Rise 5 ns tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invali...

Page 18: ...struction Codes Instruction Code Description EXTEST 000 Captures the input output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO Thi...

Page 19: ...35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M...

Page 20: ...e power and clock K K for 2048 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions a...

Page 21: ...A Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input HIGH Voltage VREF 0 1 VDDQ 0 15 V VIL Input LOW Voltage 0 15 VREF 0 1 V IX Input Leakage...

Page 22: ...Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 16 25 C W JC Thermal Resistance Junction to Case 2 91 C W AC Test Loads and Waveforms...

Page 23: ...2 0 2 ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 2 0 2 0 2 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 25 0 88 1 03 1 15 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise 25 rising edge to rising...

Page 24: ...A WPS RPS K K DON T CARE UNDEFINED CQ CQ tCQOH CCQO t tCQOH CCQO t tQVLD QVLD tQVLD Read Latency 2 0 Cycles CLZ t t CO tDOH tCQDOH CQD t tCHZ Q00 Q01 Q20 Q02 Q21 Q03 Q22 Q23 tCQH tCQHCQH Q Notes 30 Q...

Page 25: ...all Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1256V18 375BZI CY7C1243V18 375BZI CY7C1245V18 375BZI CY7C1241V18 375BZXI 51 85195 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb...

Page 26: ...0BZXC CY7C1241V18 300BZI 51 85195 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1256V18 300BZI CY7C1243V18 300BZI CY7C1245V18 300BZI CY7C1241V18 300BZXI 51 85195 165 ball Fine Pi...

Page 27: ...Y7C1245V18 Document Number 001 06365 Rev D Page 27 of 28 Package Diagram Figure 5 165 ball FBGA 15 x 17 x 1 40 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0 7 4 G...

Page 28: ...LIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make changes without further notice to the materials described herein Cypress does not assume any...

Reviews: