background image

CY7C1141V18, CY7C1156V18
CY7C1143V18, CY7C1145V18

Document Number: 001-06583  Rev. *D

Page 8 of 28

Functional Overview

The CY7C1141V18, CY7C1156V18, CY7C1143V18, and
CY7C1145V18 are synchronous pipelined Burst SRAMs
equipped with both a read port and a write port. The read port is
dedicated to read operations and the write port is dedicated to
write operations. Data flows into the SRAM through the write port
and out through the read port. These devices multiplex the
address inputs in order to minimize the number of address pins
required. By having separate read and write ports, the QDR-II+
completely eliminates the need to “turn-around” the data bus and
avoids any possible data contention, thereby simplifying system
design. Each access consists of four 8-bit data transfers in the
case of CY7C1141V18, four 9-bit data transfers in the case of
CY7C1156V18, four 18-bit data transfers in the case of
CY7C1143V18, and four 36-bit data transfers in the case of
CY7C1145V18 in two clock cycles.

Accesses for both ports are initiated on the Positive Input Clock
(K). All synchronous input and output timing refer to the rising
edge of the Input clocks (K/K).

All synchronous data inputs (D

[x:0]

) pass through input registers

controlled by the input clocks (K and K). All synchronous data
outputs (Q

[x:0]

) pass through output registers controlled by the

rising edge of the Input clocks (K and K) as well. 

All synchronous control (RPS, WPS, BWS

[x:0]

) inputs pass

through input registers controlled by the rising edge of the input
clocks (K/K). CY7C1143V18 is described in the following
sections. The same basic descriptions apply to CY7C1141V18,
CY7C1156V18, and CY7C1145V18. 

Read Operations

The CY7C1143V18 is organized internally as four arrays of 256K
x 18. Accesses are completed in a burst of four sequential 18-bit
data words. Read operations are initiated by asserting RPS
active at the rising edge of the Positive Input Clock (K). The
address presented to Address inputs are stored in the read
address register. Following the next two K clock rise, the corre-
sponding lowest order 18-bit word of data is driven onto the
Q

[17:0]

 using K as the output timing reference. On the subse-

quent rising edge of K the next 18-bit data word is driven onto
the Q

[17:0]

. This process continues until all four 18-bit data words

are driven out onto Q

[17:0]

. The requested data is valid 0.45 ns

from the rising edge of the Input clock K or K. To maintain the
internallogic, each read access must be allowed to complete.
Each read access consists of four 18-bit data words and takes
two clock cycles to complete. Therefore, read accesses to the
device cannot be initiated on two consecutive K clock rises. The
internal logic of the device ignores the second read request.
Initiate read accesses on every other K clock rise. This pipelines
the data flow such that data is transferred out of the device on
every rising edge of the input clocks K and K. 

When the read port is deselected, the CY7C1143V18 first
completes the pending read transactions. Synchronous internal
circuitry automatically tri-states the outputs following the next
rising edge of the Positive Input Clock (K). This enables for a
seamless transition between devices without the insertion of wait
states in a depth expanded memory. 

Write Operations

Write operations are initiated by asserting WPS active at the
rising edge of the Positive Input Clock (K). On the following K
clock rise the data presented to D

[17:0]

 is latched and stored into

the lower 18-bit Write Data register, provided BWS

[1:0]

 are both

asserted active. On the subsequent rising edge of the Negative
Input Clock (K) the information presented to D

[17:0]

 is also stored

into the Write Data register, provided BWS

[1:0]

 are both asserted

active. This process continues for one more cycle until four 18-bit
words (a total of 72 bits) of data are stored in the SRAM. The 72
bits of data are then written into the memory array at the specified
location. Therefore, write accesses to the device cannot be
initiated on two consecutive K clock rises. The internal logic of
the device ignores the second write request. Initiate write
accesses on every other rising edge of the Positive Input Clock
(K). This pipelines the data flow such that 18 bits of data can be
transferred into the device on every rising edge of the input
clocks (K and K). 

When deselected, the write port ignores all inputs after the
pending write operations are completed. 

Byte Write Operations

Byte Write operations are supported by the CY7C1143V18. A
write operation is initiated as described in the 

Write Operations

.

The bytes that are written are determined by BWS

0

 and BWS

1

,

which are sampled with each set of 18-bit data words. Asserting
the appropriate Byte Write Select input during the data portion of
a write enables the data being presented to be latched and
written into the device. Deasserting the Byte Write Select input
during the data portion of a write enables the data stored in the
device for that byte to remain unaltered. Use this feature to
simplify read/modify/write operations to a Byte Write operation.

Concurrent Transactions

The read and write ports on the CY7C1143V18 operate indepen-
dently of one another. Because each port latches the address
inputs on different clock edges, the user can read or write to any
location, regardless of the transaction on the other port. If the
ports access the same location when a read follows a write in
successive clock cycles, the SRAM delivers the most recent
information associated with the specified address location. This
includes forwarding data from a write cycle that was initiated on
the previous K clock rise.

Read accesses and write access must be scheduled such that
one transaction is initiated on any clock cycle. If both ports are
selected on the same K clock rise, the arbitration depends on the
previous state of the SRAM. If both ports were deselected, the
read port takes priority. If a read was initiated on the previous
cycle, the write port is based on priority (since read operations
cannot be initiated on consecutive cycles). If a write was initiated
on the previous cycle, the read port is based on priority (since
write operations cannot be initiated on consecutive cycles).
Therefore, asserting both port selects active from a deselected
state results in alternating read/write operations initiated, with the
first access being a read.

[+] Feedback 

[+] Feedback 

Summary of Contents for CY7C1141V18

Page 1: ...of two separate ports to access the memory array The read port has dedicated data outputs to support read operations and the write port has dedicated data inputs to support write operations QDR II ar...

Page 2: ...Reg Reg Reg 16 19 8 32 8 NWS 1 0 VREF Write Add Decode Write Reg 16 A 18 0 19 512K x 8 Array 512K x 8 Array 512K x 8 Array Write Reg Write Reg Write Reg 8 CQ CQ DOFF QVLD 512K x 9 Array CLK A 18 0 Gen...

Page 3: ...Reg 36 18 18 72 18 BWS 1 0 VREF Write Add Decode Write Reg 36 A 17 0 18 256K x 18 Array 256K x 18 Array 256K x 18 Array Write Reg Write Reg Write Reg 18 CQ CQ DOFF QVLD 128K x 36 Array CLK A 16 0 Gen...

Page 4: ...C VSS NC Q2 NC NC NC VREF NC NC VDDQ NC VDDQ NC NC VDDQ VDDQ VDDQ D1 VDDQ NC Q1 NC VDDQ VDDQ NC VSS NC D0 NC TDI TMS VSS A NC A NC D2 NC ZQ NC Q0 NC NC NC NC A NC 144M CY7C1156V18 2M x 9 2 3 4 5 6 7 1...

Page 5: ...5 NC NC VREF NC Q3 VDDQ NC VDDQ NC Q5 VDDQ VDDQ VDDQ D4 VDDQ NC Q4 NC VDDQ VDDQ NC VSS NC D2 NC TDI TMS VSS A NC A D7 D6 NC ZQ D3 Q2 D1 Q1 D0 NC A NC CY7C1145V18 512K x 36 2 3 4 5 6 7 1 A B C D E F G...

Page 6: ...nd write operations Internally the device is organized as 2M x 8 4 arrays each of 512K x 8 for CY7C1141V18 2M x 9 4 arrays each of 512K x 9 for CY7C1156V18 1M x 18 4 arrays each of 256K x 18 for CY7C1...

Page 7: ...m those listed in this data sheet For normal operation connect this pin to a pull up through a 10 K or less pull up resistor The device behaves in QDR I mode when the DLL is turned off In this mode op...

Page 8: ...rising edge of the Positive Input Clock K This enables for a seamless transition between devices without the insertion of wait states in a depth expanded memory Write Operations Write operations are i...

Page 9: ...ks are generated by the QDR II CQ is referenced with respect to K and CQ is refer enced with respect to K These are free running clocks and are synchronized to the input clock of the QDR II The timing...

Page 10: ...R CLKIN CLKIN D A K SRAM 4 RQ 250ohms ZQ CQ CQ Q K RPS WPS BWS D A K SRAM 1 RQ 250ohms ZQ CQ CQ Q K RPS WPS BWS RPS WPS BWS R 50ohms Vt V 2 DDQ R Notes 2 X Don t Care H Logic HIGH L Logic LOW represen...

Page 11: ...CY7C1141V18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1143V18 only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H L L H During the...

Page 12: ...is written into the device D 8 0 and D 35 18 remains unaltered H L H H L H During the data portion of a write sequence only the byte D 17 9 is written into the device D 8 0 and D 35 18 remains unalter...

Page 13: ...falling edge of TCK Instruction Register Serially load three bit instructions into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Cont...

Page 14: ...oundary scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRE...

Page 15: ...gram 11 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR SELECT IR SCAN CAPTURE IR SHIFT IR EXIT1 IR PAUSE IR EXIT2 IR UPDATE IR 1 0 1 1 0 1 0 1...

Page 16: ...ut LOW Voltage IOL 100 A 0 2 V VIH Input HIGH Voltage 0 65 VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35 VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register...

Page 17: ...Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Condition The Tap Tim...

Page 18: ...Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO This operation...

Page 19: ...2K 7 8P 34 11E 61 4B 88 1K 8 9R 35 10E 62 3A 89 2L 9 11P 36 10D 63 1H 90 3L 10 10P 37 9E 64 1A 91 1M 11 10N 38 10C 65 2B 92 1L 12 9P 39 11D 66 3B 93 3N 13 10M 40 9C 67 1C 94 3M 14 11N 41 9D 68 1B 95 1...

Page 20: ...power and clock K K for 2048 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at...

Page 21: ...l Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input HIGH Voltage VREF 0 1 VDDQ 0 15 V VIL Input LOW Voltage 0 15 VREF 0 1 V IX Input Leakage Current...

Page 22: ...ient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 13 48 C W JC Thermal Resistance junction to case 4 15 C W AC Test Loads a...

Page 23: ...0 2 0 2 0 2 ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 2 0 2 0 2 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 25 0 88 1 03 1 15 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise 25 rising edge to...

Page 24: ...D A WPS RPS K K DON T CARE UNDEFINED CQ CQ tCQOH CCQO t tCQOH CCQO t tQVLD QVLD tQVLD Read Latency 2 0 Cycles CLZ t t CO tDOH tCQDOH CQD t tCHZ Q00 Q01 Q20 Q02 Q21 Q03 Q22 Q23 tCQH tCQHCQH Q Notes 30...

Page 25: ...Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1156V18 375BZI CY7C1143V18 375BZI CY7C1145V18 375BZI CY7C1141V18 375BZXI 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Pb Fr...

Page 26: ...18 300BZXC CY7C1141V18 300BZI 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1156V18 300BZI CY7C1143V18 300BZI CY7C1145V18 300BZI CY7C1141V18 300BZXI 51 85180 165 Ball Fi...

Page 27: ...5 M C B A 0 15 4X 0 35 0 06 SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M N L J...

Page 28: ...LIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make changes without further notice to the materials described herein Cypress does not assume any...

Reviews: