background image

CY14B101K

Document Number: 001-06401 Rev. *I

Page 7 of 28

Real Time Clock Operation

nvTIME Operation

The CY14B101K offers internal registers that contain clock,
alarm, watchdog, interrupt, and control functions. RTC registers
use the last 16 address locations of the SRAM.

 

Internal double

buffering of the clock and the clock or timer information registers
prevents accessing transitional internal clock data during a
READ or WRITE operation. Double buffering also circumvents
disrupting normal timing counts or clock accuracy of the internal
clock while accessing clock data. Clock and Alarm Registers
store data in BCD format.

The RTC register addresses for CY14B101K range from
0x1FFF0 to 0x1FFFF. Refer to 

RTC Register Map[5, 6]

 on page

11 and 

Register Map Detail

 on page 12 for detailed description.

Clock Operations

The clock registers maintain time up to 9,999 years in one
second increments. The user sets the time to any calendar time
and the clock automatically keeps track of days of the week,
month, leap years, and century transitions. There are eight
registers dedicated to the clock functions that are used to set
time with a WRITE cycle and to READ time during a READ cycle.
These registers contain the Time of Day in BCD format. Bits
defined as ‘0’ are currently not used and are reserved for future
use by Cypress.

Reading the Clock

The double buffered RTC register structure reduces the chance
of reading incorrect data from the clock. The user should stop
internal updates to the CY14B101K time keeping registers
before reading clock data, to prevent reading of data in transition.
Stopping the internal register updates does not affect clock
accuracy. 

The updating process is stopped by writing a ‘1’ to the read bit
‘R’ (in the flags register at 0x1FFF0), and does not restart until a
‘0’ is written to the read bit. The RTC registers are then read while
the internal clock continues to run. After a ‘0’ is written to the read
bit (‘R’), all CY14B101K registers are simultaneously updated
within 20 ms.

Setting the Clock

Setting the write bit ‘W’ (in the flags register at 0x1FFF0) to a ‘1’
stops updates to the time keeping registers and enables the time
to be set. The correct day, date, and time are then written into
the registers in 24 hour BCD format. The time written is referred
to as the ‘Base Time’. This value is stored in nonvolatile registers
and used in calculation of the current time. Resetting the WRITE
bit to ‘0’ transfers those values to the actual clock counters, after
which the clock resumes normal operation.

Backup Power

The RTC in the CY14B101K is intended for permanently
powered operations. Either the V

RTCcap

 or V

RTCbat

 pin is

connected depending on whether a capacitor or battery is
chosen for the application. When the primary power, V

CC

, fails

and drops below V

SWITCH

, the device switches to the backup

power supply. 

The clock oscillator uses very little current to maximize the
backup time available from the backup source. Regardless of
clock operation with the primary source removed, the data stored
in nvSRAM is secure, as it is stored in the nonvolatile elements
when power was lost. 

During backup operation, the CY14B101K consumes a
maximum of 300 nA at 2V. The user should choose capacitor or
battery values according to the application. 

Backup time values, based on maximum current specifications,
are shown in the following table. Nominal times are approxi-
mately three times longer.

Using a capacitor has the obvious advantage of recharging the
backup source each time the system is powered up. If a battery
is used, use a 3V lithium; the CY14B101K only sources current
from the battery when the primary power is removed. However,
the battery is not recharged at any time by the CY14B101K. The
battery capacity is chosen for total anticipated cumulative
downtime required over the life of the system.

Stopping and Starting the Oscillator

The OSCEN bit in the calibration register at 0x1FFF8 controls
the enable and disable of the oscillator. This active LOW bit is
nonvolatile and is shipped to customers in the “enabled” (set to
0) state. To preserve the battery life when the system is in
storage, OSCEN bit must be set to ‘1’. This turns off the oscillator
circuit, extending the battery life. If the OSCEN bit goes from
disabled to enabled, it takes approximately 5 seconds

 

(10

seconds maximum) for the oscillator to start. 

While system power is off, if the voltage on the backup supply
(V

RTCcap

 or V

RTCbat

) falls below their respective minimum level,

the oscillator may fail.The CY14B101K has the ability to detect
oscillator failure when system power is restored. This is recorded
in the OSCF (Oscillator Failed bit) of the Flags register at
address 0x1FFF0. When the device is powered on (V

CC

 goes

above V

SWITCH

), the OSCEN bit is checked for “enabled” status.

If the OSCEN bit is enabled and the oscillator is not active within
the first 5 ms, the OSCF bit is set to “1”. The system must check
for this condition and then write ‘0’ to clear the flag. Note that in
addition to setting the OSCF flag bit, the time registers are reset
to the “Base Time” (see 

“Setting the Clock” 

on page 7), which is

the value last written to the time keeping registers. The Control
or Calibration registers and the OSCEN bit are not affected by
the “oscillator failed” condition.

The value of OSCF must be reset to ‘0’ when the time registers
are written for the first time. This initializes the state of this bit
which may have become set when the system was first powered
on.

To reset OSCF, set the write bit “W” (in the flags register at
0x1FFF0) to “1” to enable writes to the Flag register. Write a “0”
to the OSCF bit and then reset the write bit to “0” to disable
writes.

Table 3.  RTC Backup Time

Capacitor Value

Backup Time

0.1F

72 hours

0.47F

14 days

1.0F

30 days

[+] Feedback 

Summary of Contents for CY14B101K

Page 1: ...package ROHS compliant Functional Description The Cypress CY14B101K combines a 1 Mbit nonvolatile static RAM with a full featured real time clock in a monolithic integrated circuit The embedded nonvo...

Page 2: ...nconnected if VRTCbat is used VRTCbat Power Supply Battery Supplied Backup RTC Supply Voltage Left unconnected if VRTCcap is used INT Output Interrupt Output Program to respond to the clock alarm the...

Page 3: ...W AutoStore Operation The CY14B101K stores data to nvSRAM using one of three storage operations 1 Hardware Store activated by HSB 2 Software Store activated by an address sequence 3 AutoStore on devic...

Page 4: ...D 4 Read Address 0x7C1F Valid READ 5 Read Address 0x703F Valid READ 6 Read Address 0x8FC0 Initiate STORE cycle The software sequence is clocked with CE controlled READs or OE controlled READs After th...

Page 5: ...ality assurance Incoming inspection routines at customer or contract manufacturer s sites sometimes reprograms these values Final NV patterns are typically repeating patterns of AA 55 00 FF A5 or 5A T...

Page 6: ...t Data Output Data Output High Z Active ICC2 1 2 3 L H L 0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x4C63 Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile RECALL Output Data Output Data Output D...

Page 7: ...low VSWITCH the device switches to the backup power supply The clock oscillator uses very little current to maximize the backup time available from the backup source Regardless of clock operation with...

Page 8: ...h of these fields has a match bit that is used to determine if the field is used in the alarm match logic Setting the match bit to 0 indicates that the corresponding field is used in the match process...

Page 9: ...to a host microcontroller The control bits are summarized in the following section Interrupt Register Watchdog Interrupt Enable WIE When set to 1 the watchdog timer drives the INT pin and an internal...

Page 10: ...el H L High Low Enable Watchdog Timer Power Monitor Clock Alarm VINT WDF WIE PF PFE AF AIE P L Pin Driver H L INT VCC VSS C 1 C 2 RF Y 1 X1 X2 A0 A1 A2 A3 DQ0 Recommended Values Y1 32 768KHz RF 10M Oh...

Page 11: ...N 0 0 Cal Sign 0 Calibration 00000 Calibration Values 7 0x1FFF7 WDS 0 WDW 0 WDT 000000 Watchdog 7 0x1FFF6 WIE 0 AIE 0 PFE 0 0 H L 1 P L 0 0 0 Interrupts 7 0x1FFF5 M 1 0 10s Alarm Date Alarm Day Alarm...

Page 12: ...r 0x1FFFC Time Keeping Day D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 Day of Week Lower nibble three bits contains a value that correlates to day of the week Day of the week is a ring counter that counts from...

Page 13: ...31 25 ms The range of timeout value is 31 25 ms a setting of 1 to 2 seconds setting of 3 Fh Setting the watchdog timer register to 0 disables the timer These bits can be written only if the WDW bit w...

Page 14: ...being reset by the user It is cleared to 0 when the Flags register is read or on power up AF Alarm Flag This read only bit is set to 1 when the time and date match the values stored in the alarm regi...

Page 15: ...btained without output loads IOUT 0 mA Commercial 65 55 50 mA mA Industrial 70 60 55 mA mA ICC2 Average VCC Current during STORE All Inputs Do Not Care VCC Max Average current for duration tSTORE 6 mA...

Page 16: ...al Resistance These parameters are guaranteed but not tested Parameter Description Test Conditions 48 SSOP Unit JA Thermal Resistance junction to ambient Test conditions follow standard test methods a...

Page 17: ...to Output Inactive 10 13 15 ns tLZOE 13 tGLQX Output Enable to Output Active 0 0 0 ns tHZOE 13 tGHQZ Output Disable to Output Inactive 10 13 15 ns tPU 14 tELICCH Chip Enable to Power Active 0 0 0 ns...

Page 18: ...Write 20 25 30 ns tSA tAVWL tAVEL Address Setup to Start of Write 0 0 0 ns tHA tWHAX tEHAX Address Hold After End of Write 0 0 0 ns tHZWE 13 16 tWLQZ Write Enable to Output Disable 10 13 15 ns tLZWE 1...

Page 19: ...65 V tVCCRISE VCC Rise Time 150 s Figure 12 AutoStore Power Up RECALL VCC VSWITCH tSTORE tSTORE tHRECALL tHRECALL AutoStore POWER UP RECALL Read Write Inhibited STORE occurs only if a SRAM write has...

Page 20: ...s Figure 13 CE Controlled Software STORE RECALL Cycle 22 Figure 14 OE Controlled Software STORE RECALL Cycle 22 tRC tRC tSA tSCE tHA tSTORE tRECALL DATA VALID DATA VALID 6 S S E R D D A 1 S S E R D D...

Page 21: ...e 70 s Figure 16 Soft Sequence Processing 22 24 W W6725 W W 7 9 7 9 03 1 03 1 6 1 4 7 287 6 287 W3 6 GGUHVV GGUHVV GGUHVV GGUHVV 6RIW 6HTXHQFH RPPDQG W66 W66 GGUHVV 9 W6 W 6RIW 6HTXHQFH RPPDQG W Notes...

Page 22: ...ime to Start At Min Temperature from Power up or Enable 10 sec At 25 C Temperature from Power up or Enable 5 sec Truth Table For SRAM Operations HSB should remain HIGH for SRAM Operations CE WE OE Inp...

Page 23: ...n T Tape and Reel Blank Std Speed 25 25 ns Data Bus K x8 RTC Density 101 1 Mb Voltage B 3 0V Cypress NVSRAM 14 AutoStore Software Store Hardware Store Package SP 48 SSOP 35 35 ns Temperature C Commerc...

Page 24: ...ckage Type Operating Range 25 CY14B101K SP25XC 51 85061 48 pin SSOP Commercial CY14B101K SP25XCT CY14B101K SP25XI 51 85061 48 pin SSOP Industrial CY14B101K SP25XIT 35 CY14B101K SP35XC 51 85061 48 pin...

Page 25: ...CY14B101K Document Number 001 06401 Rev I Page 25 of 28 Package Diagrams Figure 17 48 Pin Shrunk Small Outline Package 51 85061 51 85061 C Feedback...

Page 26: ...ure spec to Data Retention 20 years at 55 C Removed Icc1 values from the DC table for 25 ns and 35 ns Industrial Grade Changed Icc2 value from 3 mA to 6 mA in the DC Table Added a footnote on VIH Adde...

Page 27: ...n Register Map Detail table Added Industrial specs for 25ns and 35ns speed Changed VIH from Vcc 0 3 to Vcc 0 5 Added Data Retention and Endurance table on page 15 Added Thermal resistance values Added...

Page 28: ...firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement Any reproduction modification translation compilation...

Reviews: