Curtiss-Wright KAD/ADC/129/S2 Manual Download Page 9

KAD/ADC/129/S2

9

1 Jun. 2021 | DST/V/081

CURTISSWRIGHT.COM 

The DC error specification is checked as a differential input, so it does not include loading by R

ADJ

 which causes an additional

gain error. 

In the previous figure, the gain error only occurs when the active leg of the bridge is connected to ANALOG(x)-. In this situation,
ANALOG(x)- is loaded by R

ADJ

, forming a resistor divider with the resistance of bridge visible from the ANALOG(x)- input. 

The gain error on ANALOG(x)- input can be quantified as follows:

where R

P

 = R

2

 in parallel with R

4

This additional gain error depends on the resistance of the bridge and can be typically -0.5% for a 350Ω bridge with its active leg
connected to ANALOG(x)-, and -0.172% for a 120Ω bridge.

In the case of a full-bridge with two active legs, only one leg of the bridge is affected. Therefore the gain error of voltage across
the bridge is half of the above quoted figures, that is, -0.25% for a 350Ω bridge.

For  a  symmetrical  input  range,  the  error  can  be  expressed  as  %FSR  error  by  further  dividing  the  value  by  two,  yielding  to
±0.125% FSR for a 350Ω bridge.

Note that the gain error due to R

ADJ

 does not apply when:

using a wheatstone bridge with the active elements (typically strain gages) placed only on the leg of the bridge connected to 
ANALOG(x)+ 

the leg of the bridge connected to ANALOG(x)- is populated with completion resistors (half-bridge with completion resistors)

using only differential ended inputs with signal source isolated from module ground

using only inputs in single ended configuration, connecting the signal to ANALOG(x)+ (ANALOG(x)- must be connected to 
ground). This data sheet shows an example potentiometer application, which is not affected by this gain error.

Modules with R

ADJ

 connected externally might show this additional gain error offset but only if the balance adjust circuit is used

and in the cases stated previously.

N

OTE

:  

Gain error can be compensated at post processing, as the nominal resistance of the bridge is known.

Understanding filter delays

The Acra KAM-500  uniquely samples  all signals  at  the start  of  an  acquisition  cycle and  at  equal intervals of time  thereafter.
Signals sampled at the same sample rate will always be sampled at the same time independently of how they are stored or
transmitted. (This has significant advantages for issues such as time correlation.) However, before signals are sampled they are
filtered to remove noise components that might alias. The recommended cutoff point is one quarter the sampling frequency, as
this results in the maximum filtering of aliasing frequencies. 

The Acra KAM-500 filters signals using over-sampling signal processing techniques. The figure below shows a delay for an 8

th

order filter where f

c

 = 1kHz. All filters cause a delay inversely proportional to the filter cutoff frequency (f

c

), so to calculate the

delay for other f

c

 values, multiply the delay by (1kHz / f

c

). The frequency axis then needs to be rescaled to the new f

c

 by dividing

the frequency values by (1kHz / f

c

). For example, an 8

th

 order Butterworth filter with an f

c

 of 1kHz delays a 1kHz signal by 1ms; a

filter with an f

c

 of 10Hz delays a 10Hz signal by 0.1s. The delay for IIR filters (for example Butterworth) varies with the input

frequency.

%

100

adj

P

P

R

R

R

Error

Summary of Contents for KAD/ADC/129/S2

Page 1: ...ADC 129 S2 is a hard wired state machine that over samples all channels at a rate between 200ksps and 400ksps and digitally filters any noise above the user programmable cutoff frequency This is achieved using cascaded half band decimate by 2 x 15 tap Finite Impulse Response FIR filters followed by an 8th order Butterworth Infinite Impulse Response IIR filter with a default cutoff point set at a q...

Page 2: ...and write Power consumption 5V 100 180 mA 7V 15 30 mA Excludes current used by excitation 7V 10 25 mA Excludes current used by excitation 12V 50 80 mA 12V 40 70 mA total power 1 75 3 09 W Particular combinations of chassis and Acra KAM 500 modules may have power or current limitations For details see TEC NOT 016 Power dissipation TEC NOT 049 Power estimation and the relevant chassis data sheet Env...

Page 3: ...3kHz fin 10kHz fs 100kHz fc fs 4 0 35 0 8 FSR For 10kHz fin 15kHz fs 100kHz fc fs 4 Effective number of bits gain 1 10 12 13 5 bits fc 25kHz and secondary gain of 1 fc filter cutoff frequency gain 100 11 5 12 5 bits fc 25kHz and secondary gain of 1 gain 1000 9 10 5 bits fc 25kHz and secondary gain of 1 Crosstalk gain 1 10 100 100 90 dB fin 25kHz and secondary gain of 1 gain 1000 80 72 dB fin 25kHz...

Page 4: ...D 300 kΩ Module powered on measured at 3kHz TABLE 3 Bipolar DC voltage excitation outputs PARAMETER MIN TYP MAX UNITS CONDITION DETAILS Outputs 4 Applied per channel Output voltage operating range 0 5 1 V Bi polar excitation 5V is 10V across the bridge resolution 1 8 mV Bi polar excitation 1 8mV is 3 6mV across the bridge compliance 30 mA Per channel short circuit current 125 mA short circuit dura...

Page 5: ...s than 0 01 FSR 200 times lower than the error specified here drift 0 15 FSR Over temperature noise gain 1 0 5 mVrms As measured on analog input noise gain 10 0 05 mVrms As measured on analog input noise gain 100 1000 0 01 mVrms As measured on analog input Output resistance 34 8 kΩ 1 The balance line is permanently connected to ANALOG x input The line is intended for balancing strain gages so the ...

Page 6: ... sampling rate Excitation Amplitude 0 to 5 1 0 2 Required excitation in V for the top of the bridge Excitation is bipolar so entering 5V means 10V across the bridge Balance Type CurrentShunt CurrentShunt Specifies the balance type to be carried out on the bridge Balance Applied 71e 6 to 71e 6 0 Shunt current in A applied to the bridge Balance BalanceThisTime True False False Specifies if balancing...

Page 7: ...ANALOG SENSE 1 GAIN 1 10 100 1000 INST AMP AAAF DIGITAL FILTER LOOKUP TABLE 34 8K R ADJ VADJ DIGITAL ANALOG VREF EXC_V 1 STANDARD BUS INTERFACE AND LOGIC SENSE 1 51 7 8 11 10 9 12 EXC_V 2 ANALOG 2 ANALOG 2 KAD ADC 129 S2 ANALOG DIGITAL COUNTS UNITS DIGITAL ANALOG SENSE 2 GAIN 1 10 100 1000 INST AMP AAAF DIGITAL FILTER LOOKUP TABLE 34 8K RADJ VADJ DIGITAL ANALOG V REF EXC_V 2 STANDARD BUS INTERFACE...

Page 8: ...put configuration for the KAD ADC 129 S2 With this configuration the differential input amplifier removes common mode voltage or common mode pickup noise on the input lines For potentiometer circuits where the negative input is tied to ground excitation drift can have a direct impact on the input signal either as a gain or an offset error Note that excitation can drift up to 0 3 on an FSR of 5 1V ...

Page 9: ...onfiguration connecting the signal to ANALOG x ANALOG x must be connected to ground This data sheet shows an example potentiometer application which is not affected by this gain error Modules with RADJ connected externally might show this additional gain error offset but only if the balance adjust circuit is used and in the cases stated previously NOTE Gain error can be compensated at post process...

Page 10: ...t than suppression of aliasing set the same cutoff point on all channels even if the sampling rates are different Sense lines Sense lines are used to eliminate error due to voltage drop across lead resistance Sense lines can not be left unconnected they should be connected as close as possible to the bridge If however the sense lines are connected close to the module that is far from the bridge an...

Page 11: ... top of bridge 15 EXC_V 2 Bipolar DC voltage excitation outputs Excitation to bottom of bridge 16 ANALOG 2 Differential ended analog inputs Analog input connected to internal adjust 17 ANALOG 2 Differential ended analog inputs Analog input 18 SENSE 2 Bipolar DC voltage excitation outputs Sense line from bottom of bridge 19 SENSE 3 Bipolar DC voltage excitation outputs Sense line from top of bridge...

Page 12: ...r from the 7V power line for excitation and therefore cannot be used with KAM CHS 04L KAM CHS 05F KAM CHS 03F or KAM CHS 02F Revision history Supporting software Related documentation PART NUMBER DESCRIPTION KAD ADC 129 S2 Full bridge ADC voltage excitation programmable analog gain sense lines 25kHz b w 4ch at 100ksps REVISION DIFFERENCES STATUS KAD ADC 129 S2 First release Recommended for new pro...

Reviews: