background image

Q. How can I find the RPM needed to get specific GPM

(Gallons Per Minute) I want?

Rated RPM

A. Desired RPM = Desired GPM x

Rated GPM

Q. I have to run my pump at a certain RPM. How do I figure

the GPM I’ll get?

Rated GPM

A. Desired GPM = Desired RPM x

Rated RPM

Q. Is there a simple way to find the approximate horsepower

I’ll need to run the pump?

A. Electric Brake

GPM x PSI

(Standard 85%

Horsepower Required 

=

1460

Mech. Efficiency)

Q. What size motor pulley should I use?

Pump RPM

A. Pump Pulley (Outer Diameter) x

Motor/Engine RPM

Q. How do I calculate the torque for my hydraulic drive

system?

GPM x PSI

A. Torque (ft. lbs.) = 3.6

RPM

(       )

One or several of the conditions shown in the chart below may
contribute to cavitation in a system resulting in premature wear,
system downtime and unnecessary operating costs.

CONDITION

SOLUTION

Inadequate inlet

Increase line size to the inlet port or one size

line size

larger

Water hammering

Install C.A.T. Tube

liquid acceleration/

Move pump closer to liquid supply

deacceleration

Rigid Inlet Plumbing

Use flexible wire reinforced hose to absorb
pulsation and pressure spikes

Excessive Elbows in

Keep elbows to a minimum and less than 90°

Inlet Plumbing

Excessive Liquid

Use Thermo Valve in bypass line

Temperature

Do not exceed pump temperature specifications

Substitute closed loop with baffled holding tank

Adequately size tank for frequent or high
volume bypass

Pressure feed high temperature liquids

Properly ventilate cabinets and rooms

Air Leaks in Plumbing

Check all connections

Use PTFE thread tape or pipe thread sealant

Agitation in Supply

Size tank according to pump output —

Tank

Minimum 6-10 times system GPM

Baffle tank to purge air from liquid and
separate inlet from discharge

High Viscosity Liquids

Verify viscosity against pump specifications
before operation

Elevate liquid temperature enough to reduce
viscosity

Lower RPM of pump

Pressure feed pump

Increase inlet line size

Clogged Filters

Perform regular maintenance or use clean
filters to monitor build up

Use adequate mesh size for liquid and pump
specifications

Handy Formulas to Help You

(Consult

Engine Mfr.)

TYPICAL RESERVOIR TANK

RECOMMENDED 6 TO 10 TIMES SYSTEM CAPACITY

Avoid Cavitation Damage

1/4

5/16

3/8

1/2

5/8

3/4

1"

0.5

16

5

2

1

54

20

7

2

2

180

60

25

6

2

3

380

120

50

13

4

2

4

220

90

24

7

3

5

320

130

34

10

4

6

220

52

16

7

1

8

300

80

25

10

2

10

450

120

38

14

3

15

900

250

80

30

7

20

1600

400

121

50

12

25

650

200

76

19

30

250

96

24

40

410

162

42

50

600

235

62

60

370

93

*At a fixed flow rate with a given size hose, the pressure drop across a given hose length
will be directly proportional. A 50 ft. hose will exhibit one-half the pressure drop of a 100
ft. hose. Above values shown are valid at all pressure levels.

PRESSURE DROP IN PSI PER 100 FT OF HOSE

WITH TYPICAL WATER FLOW RATES

Hose Inside Diameters, Inches

Water*

Flow

Gal/Min

HOSE FRICTION LOSS

Water

GPM

1

2

3

5

8

10

15

25

40

60

80

100

Steel Pipe—Nominal Dia.

1/4 3/8 1/2 3/4

1 1

1

/

4

1

1

/

2

8.5 1.9

30 7.0 2.1

60 14 4.5 1.1

150 36

12 2.8

330 86

28 6.7 1.9

520 130

43 10 3.0

270

90 21 6.2 1.6

670 240 56

16 4.2 2.0

66

17 8.0

37

17

52

29

210 107

48

Brass Pipe—Nominal Dia.

1/4 3/8 1/2 3/4

1

1

1

/

4

1

1

/

2

6.0 1.6

20 5.6 1.8

40 11 3.6

100 28 9.0 2.2

220 62

21 5.2 1.6

320 90

30 7.8 2.4

190

62 16 5.0 1.5

470 150 40

12 3.8 1.7

39

11 5.0

23

11

40

19

61

28

Copper Tubing O.D. Type L
1/4 3/8 1/2 5/8 3/4 7/8

120 13 2.9 1.0

400 45

10 3.4 1.3

94

20 6.7 2.6

230

50 17 6.1 3.0

500 120 40

15 6.5

180 56

22

10

120

44

20

330 110

50

550 200

88

WATER LINE PRESSURE LOSS

PRESSURE DROP IN PSI PER 100 FEET

1/2

0.622

0.41

18.5

9.3

0.78

1.67

3.71

0.93

3.33

3/4

0.824

0.54

24.5

12.3

1.03

2.21

4.90

1.23

4.41

1

1.049

0.69

31.2

15.6

1.31

2.81

6.25

1.56

5.62

1

1

/

4

1.380

0.90

41.0

20.5

1.73

3.70

8.22

2.06

7.40

1

1

/

2

1.610

1.05

48.0

24.0

2.15

4.31

9.59

2.40

8.63

2

2.067

1.35

61.5

30.8

2.59

5.55

12.30

3.08

11.60

2

1

/

2

2.469

1.62

73.5

36.8

3.09

6.61

14.70

3.68

13.20

3

3.068

2.01

91.5

45.8

3.84

8.23

18.20

4.57

16.40

4

4.026

2.64

120.0

60.0

5.03

10.80

23.90

6.00

21.60

Nominal

Pipe 

Size

Inches

Inside

Diameter

Inches

RESISTANCE OF VALVES AND FITTINGS

Gate

Valve

Globe

Valve

Angle

Valve

45˚

Elbow

90˚

Elbow

180˚

Close

Ret

Tee

Thru

Run

Arriving at a total line pressure loss, consideration should then be given to
pressure loss created by valves, fittings and elevation of lines.

If a sufficient number of valves and fittings are incorporated in the system to
materially affect the total line loss, add to the total line length, the equivalent
length of line of each valve or fitting.

Tee

Thru

Branch

Equivalent Length of Standard Pipe in Feet

Bypass Line

(from regulator or unloader)

Level Sensing

Device

Bypass Line

(from regulator or

unloader)

MIN. 4"

1.5 x D (Min.)

Minimum Two Baffles

Sealed at Bottom

Minimum

Liquid

Level

FILTER

MIN. 4"

Flexible Hose
to Pump

Supply Line

(Dia of pipe)

T
X

D

Summary of Contents for 1851

Page 1: ...hich would be read at the discharge manifold of the pump NOT AT THE GUN OR NOZZLE Use PTFE thread tape or pipe thread sealant sparingly to connect accessories or plumbing E xercise ca ution not to wrap tape beyond the last threa d to avoid tape from becoming lodged in the pump or accessories This condition will cause a malfunction of the pump or system PRESSURE REGULATION All systems require both ...

Page 2: ...s 2 and 3 found under Disassembly for Discharge Valves 2 Using an allen wrench remove the Hex Socket Head Screws HSH from the VBM 3 Insert two M8x114 metric threaded bolts into the right and left servicing holes on the VBM face Thread in bolt until it makes contact with Inlet Manifold Continue threading until manifolds begin to separate Support underside of VBM to avoid possi ble damage to ceramic...

Page 3: ...nto valve chamber of Discharge Manifold with Spring Retainer facing down until completely seated 14 Support the VBM from the under side and slide manifold over Manifold Studs Apply anti seize to HSH screw threads and thread in hand tight Torque in sequence to specifications in torque chart 15 Support the Discharge Manifold from the under side and slide manifold over the Manifold Studs Install Flat...

Page 4: ...ilicone base lubricant NOTE For standard installation apply a small amount of oil to the outside edge of the LPS HPS VP MA FA and O Rings for ease of installation and to avoid damage Models 1861 1861K 1 Examine Lo Pressure Seals for wear to the internal ridges outer surfaces or for broken springs and replace as needed 2 Examine LPS Adapters for scale build up or wear and O Rings for cuts or deteri...

Page 5: ... 8 Examine Gaskets O Rings and Back up Rings for cuts or wear and replace as needed 9 Examine Plunger Retainers for wear or damaged threads and replace as needed Plunger arrangement 10 Install Gaskets first then O Rings and Back up Rings onto Plunger Retainers NOTE Lubricate O Rings and Back up Rings for ease in installation and to reduce possible damage 11 Apply Loctite 242 to exposed threaded en...

Page 6: ...Line size must be a minimum of one size larger than the pump inlet fitting Avoid tees 90 degree elbows or valves in the inlet line of the pump to reduce the risk of flow restriction and cavitation The line MUST be a FLEXIBLE hose NOT a rigid pipe and reinforced on SUCTION systems to avoid collapsing The simpler the inlet plumbing the less the potential for problems Keep the length to a minimum the...

Page 7: ...34 10 4 6 220 52 16 7 1 8 300 80 25 10 2 10 450 120 38 14 3 15 900 250 80 30 7 20 1600 400 121 50 12 25 650 200 76 19 30 250 96 24 40 410 162 42 50 600 235 62 60 370 93 At a fixed flow rate with a given size hose the pressure drop across a given hose length will be directly proportional A 50 ft hose will exhibit one half the pressure drop of a 100 ft hose Above values shown are valid at all pressu...

Page 8: ...If low recharge or install a new dampener Foreign material trapped in inlet discharge valves Clean inlet discharge valves or install new valve kit Water leak Under the manifold Worn V Packings High Pressure or Lo Pressure Seals Install new seal kit Increase frequency of service Worn adapter o rings Install new o rings Into the crankcase Humid air condensing into water inside the crankcase Install ...

Reviews: