Section 7. Installation
202
7.7.9.1 OutputOpt Parameters
In the CR800
WindVector()
instruction, the
OutputOpt
parameter defines the
processed data that are stored. All output options result in an array of values, the
elements of which have
_WVc(n)
as a suffix, where
n
is the element number. The
array uses the name of the
Speed/East
variable as its base. See table
WindVector() OutputOpt Options
(p. 202).
WindVector() OutputOpt Options
Option
Description (WVc() is the Output Array)
0
WVc(1): Mean horizontal wind speed (S)
WVc(2): Unit vector mean wind direction (Θ1)
WVc(3): Standard deviation of wind direction
σ
(Θ1). Standard
deviation is calculated using the Yamartino algorithm. This
option complies with EPA guidelines for use with straight-line
Gaussian dispersion models to model plume transport.
1
WVc(1): Mean horizontal wind speed (S)
WVc(2): Unit vector mean wind direction (Θ1)
2
WVc(1): Mean horizontal wind speed (S)
WVc(2): Resultant mean horizontal wind speed (U)
WVc(3): Resultant mean wind direction (Θu)
WVc(4): Standard deviation of wind direction σ(Θu). This
standard deviation is calculated using Campbell Scientific's wind
speed weighted algorithm. Use of the resultant mean horizontal
wind direction is not recommended for straight-line Gaussian
dispersion models, but may be used to model transport direction
in a variable-trajectory model.
3
WVc(1): Unit vector mean wind direction (Θ1)
4
WVc(1): Unit vector mean wind direction (Θ1)
WVc(2):
Standard deviation of wind direction σ(Θu). This
standard deviation is calculated using Campbell Scientific's wind
speed weighted algorithm. Use of the resultant mean horizontal
wind direction is not recommended for straight-line Gaussian
dispersion models, but may be used to model transport direction
in a variable-trajectory model.
7.7.9.2 Wind Vector Processing
WindVector()
uses a zero-wind-speed measurement when processing scalar wind
speed only. Because vectors require magnitude and direction, measurements at
zero wind speed are not used in vector speed or direction calculations. This
means, for example, that manually-computed hourly vector directions from 15
minute vector directions will not agree with CR800-computed hourly vector
directions. Correct manual calculation of hourly vector direction from 15 minute
vector directions requires proper weighting of the 15 minute vector directions by
the number of valid (non-zero wind speed) wind direction samples.
Summary of Contents for CR800 Series
Page 2: ......
Page 4: ......
Page 6: ......
Page 32: ......
Page 34: ......
Page 54: ......
Page 92: ......
Page 310: ......
Page 446: ...Section 8 Operation 446 8 11 2 Data Display FIGURE 100 CR1000KD Displaying Data ...
Page 448: ...Section 8 Operation 448 FIGURE 102 CR1000KD Real Time Custom ...
Page 449: ...Section 8 Operation 449 8 11 2 3 Final Storage Data FIGURE 103 CR1000KD Final Storage Data ...
Page 450: ...Section 8 Operation 450 8 11 3 Run Stop Program FIGURE 104 CR1000KD Run Stop Program ...
Page 452: ...Section 8 Operation 452 FIGURE 106 CR1000KD File Edit ...
Page 456: ......
Page 462: ......
Page 523: ...Section 11 Glossary 523 FIGURE 116 Relationships of Accuracy Precision and Resolution ...
Page 524: ......
Page 526: ......
Page 556: ......
Page 558: ......
Page 560: ......
Page 597: ......