SECTION 13. CR10 MEASUREMENTS
13-6
FIGURE 13.3-4. Wire Manufacturers Capacitance Specifications, C
w
TABLE 13.3-2. Properties of Three Belden Lead Wires Used by Campbell Scientific
Belden
Rl
C
w
Wire #
Conductors
Insulation
AWG
(ohms/1000ft.)
(pfd/ft.)
8641
1 shld. pair
polyethylene
24
23
42
8771
1 shld. 3 cond.
polyethylene
22
15
41
8723
2 shld. pair
polypropylene
22
15
62
DIELECTRIC ABSORPTION
The dielectric absorption of insulation
surrounding individual conductors can seriously
affect the settling waveform by increasing the
time required to settle as compared to a simple
exponential. Dielectric absorption is difficult to
quantify, but it can have a serious effect on low
level measurements (i.e., 50 mV or less). The
primary rule to follow in minimizing dielectric
absorption is: Avoid PVC insulation around
conductors. PVC cable jackets are permissible
since the jackets don't contribute to the lead
capacitance because the jacket is outside the
shield. Campbell Scientific uses only
polyethylene and polypropylene insulated
conductors in CR10 sensors (see Table 13.3-2)
since these materials have negligible dielectric
absorption. Teflon insulation is also very good
but quite expensive.
13.3.2 EFFECT OF LEAD LENGTH ON SIGNAL
RISE TIME
In the 024A Wind Vane, a potentiometer
sensor, the peak transient voltage is much less
than the true signal voltage (see Table 13.3-5).
This means the signal rise time is the major
source of error and the time constant is the
same as if C
w
were between the signal lead
and ground as represented below.
FIGURE 13.3-5. Model 024A Wind Direction Sensor
Summary of Contents for CR10 PROM
Page 2: ...This is a blank page ...
Page 4: ...This is a blank page ...
Page 9: ...CR10 TABLE OF CONTENTS v LIST OF TABLES LT 1 LIST OF FIGURES LF 1 INDEX I 1 ...
Page 10: ...CR10 TABLE OF CONTENTS vi This is a blank page ...
Page 14: ...CR10 OVERVIEW OV 2 ...
Page 15: ...CR10 OVERVIEW OV 3 FIGURE OV1 1 1 CR10 and Wiring Panel ...
Page 16: ...CR10 OVERVIEW OV 4 FIGURE OV1 1 2 CR10 Wiring Panel Instruction Access ...
Page 17: ...CR10 OVERVIEW OV 5 ...
Page 34: ...CR10 OVERVIEW OV 22 ...
Page 35: ...CR10 OVERVIEW OV 23 FIGURE OV6 1 1 Data Retrieval Hardware Options ...
Page 36: ...CR10 OVERVIEW OV 24 OV7 SPECIFICATIONS ...
Page 37: ...CR10 OVERVIEW OV 25 ...
Page 38: ...CR10 OVERVIEW OV 26 ...
Page 51: ...SECTION 1 FUNCTIONAL MODES 1 13 This is a blank page ...
Page 53: ...2 2 ...
Page 62: ...SECTION 3 INSTRUCTION SET BASICS 3 6 ...
Page 63: ...SECTION 3 INSTRUCTION SET BASICS 3 7 ...
Page 68: ...SECTION 3 INSTRUCTION SET BASICS 3 12 This is a blank page ...
Page 74: ...SECTION 4 EXTERNAL STORAGE PERIPHERALS 4 6 ...
Page 88: ...6 5 FIGURE 6 6 1 Addressing Sequence for the RF Modem ...
Page 110: ...SECTION 7 MEASUREMENT PROGRAMMING EXAMPLES 7 17 FIGURE 7 16 2 Well Monitoring Example ...
Page 132: ...SECTION 8 PROCESSING AND PROGRAM CONTROL EXAMPLES 8 13 This is a blank page ...
Page 197: ...SECTION 13 CR10 MEASUREMENTS 13 18 FIGURE 13 5 1 Circuits Used with Instructions 4 9 ...
Page 203: ...SECTION 13 CR10 MEASUREMENTS 13 24 This is a blank page ...
Page 215: ...SECTION 14 INSTALLATION AND MAINTENANCE 14 12 This is a blank page ...
Page 218: ...APPENDIX A GLOSSARY A 3 and computers in a terminal mode fall in this category ...
Page 220: ...APPENDIX A GLOSSARY A 5 This is a blank page ...
Page 228: ...APPENDIX C BINARY TELECOMMUNICATIONS C 6 This is a blank page ...
Page 230: ...This is a blank page ...
Page 232: ...This is a blank page ...
Page 234: ...APPENDIX G CHANGING RAM OR PROM CHIPS G 2 FIGURE G 1 Disassembling CR10 ...
Page 236: ...APPENDIX G CHANGING RAM OR PROM CHIPS G 4 FIGURE G 3 Jumper Settings and Locations ...
Page 237: ...APPENDIX G CHANGING RAM OR PROM CHIPS G 5 This is a blank page ...