13-1
SECTION 13. CR10 MEASUREMENTS
13.1 FAST AND SLOW MEASUREMENT
SEQUENCE
The CR10 makes voltage measurements by
integrating the input signal for a fixed time and
then holding the integrated value for the analog
to digital (A/D) conversion. The A/D conversion
is made with a 13 bit successive approximation
technique which resolves the signal voltage to
approximately one part in 7500 of the full scale
range on a differential measurement (e.g.,
1/7500 x 2.5 V = 333 uV). The resolution of a
single-ended measurement is one part in 3750.
Integrating the signal removes noise that could
create an error if the signal were instantaneously
sampled and held for the A/D conversion. There
are two integration times which can be specified
for voltage measurement instructions, the slow
integration (2.72 ms), or the fast integration (250
us). The slow integration time provides a more
noise-free reading than the fast integration time.
Integration time is specified in the Range Code
of the measurement instruction. Instructions 1 -
14 RANGE codes:
Slow (2.72 ms Integration time)
Fast (250 us Integration time)
60 Hz rejection
50 Hz rejection
Full Scale range
1
11
21
31
±
2.5 mV
2
12
22
32
±
7.5 mV
3
13
23
33
±
25 mV
4
14
24
34
±
250 mV
5
15
25
35
±
2500 mV
One of the most common sources of noise is 60
Hz from AC power lines. Where 60 Hz noise is
a problem, range codes 21 - 25 should be
used. Two integrations are made spaced 1/2
cycle apart (Figure 13.2-2), which results in the
AC noise integrating to 0. Integration time for
the 2500 mV range is 1/10 the integration time
for the other gain ranges (2.72 ms). For
countries with 50 Hz power Range codes 31 -
35 are used for 50 Hz rejection.
There are several situations where the fast
integration time is preferred. The fast
integration time minimizes time skew between
measurements and increases the throughput
rate. The current drain on the CR10 batteries is
lower when the fast integration time is used.
The fast integration time should always be used
with the AC half bridge (Instruction 5) when
measuring AC resistance or the output of an
LVDT. An AC resistive sensor will polarize if a
DC voltage is applied, causing erroneous
readings and sensor decay. The induced
voltage in an LVDT decays with time as current
in the primary coil shifts from the inductor to the
series resistance; a long integration time would
result in most of the integration taking place
after the signal had disappeared.
FIGURE 13.1-1. 50 and 60 Hz Noise Rejection
Summary of Contents for CR10 PROM
Page 2: ...This is a blank page ...
Page 4: ...This is a blank page ...
Page 9: ...CR10 TABLE OF CONTENTS v LIST OF TABLES LT 1 LIST OF FIGURES LF 1 INDEX I 1 ...
Page 10: ...CR10 TABLE OF CONTENTS vi This is a blank page ...
Page 14: ...CR10 OVERVIEW OV 2 ...
Page 15: ...CR10 OVERVIEW OV 3 FIGURE OV1 1 1 CR10 and Wiring Panel ...
Page 16: ...CR10 OVERVIEW OV 4 FIGURE OV1 1 2 CR10 Wiring Panel Instruction Access ...
Page 17: ...CR10 OVERVIEW OV 5 ...
Page 34: ...CR10 OVERVIEW OV 22 ...
Page 35: ...CR10 OVERVIEW OV 23 FIGURE OV6 1 1 Data Retrieval Hardware Options ...
Page 36: ...CR10 OVERVIEW OV 24 OV7 SPECIFICATIONS ...
Page 37: ...CR10 OVERVIEW OV 25 ...
Page 38: ...CR10 OVERVIEW OV 26 ...
Page 51: ...SECTION 1 FUNCTIONAL MODES 1 13 This is a blank page ...
Page 53: ...2 2 ...
Page 62: ...SECTION 3 INSTRUCTION SET BASICS 3 6 ...
Page 63: ...SECTION 3 INSTRUCTION SET BASICS 3 7 ...
Page 68: ...SECTION 3 INSTRUCTION SET BASICS 3 12 This is a blank page ...
Page 74: ...SECTION 4 EXTERNAL STORAGE PERIPHERALS 4 6 ...
Page 88: ...6 5 FIGURE 6 6 1 Addressing Sequence for the RF Modem ...
Page 110: ...SECTION 7 MEASUREMENT PROGRAMMING EXAMPLES 7 17 FIGURE 7 16 2 Well Monitoring Example ...
Page 132: ...SECTION 8 PROCESSING AND PROGRAM CONTROL EXAMPLES 8 13 This is a blank page ...
Page 197: ...SECTION 13 CR10 MEASUREMENTS 13 18 FIGURE 13 5 1 Circuits Used with Instructions 4 9 ...
Page 203: ...SECTION 13 CR10 MEASUREMENTS 13 24 This is a blank page ...
Page 215: ...SECTION 14 INSTALLATION AND MAINTENANCE 14 12 This is a blank page ...
Page 218: ...APPENDIX A GLOSSARY A 3 and computers in a terminal mode fall in this category ...
Page 220: ...APPENDIX A GLOSSARY A 5 This is a blank page ...
Page 228: ...APPENDIX C BINARY TELECOMMUNICATIONS C 6 This is a blank page ...
Page 230: ...This is a blank page ...
Page 232: ...This is a blank page ...
Page 234: ...APPENDIX G CHANGING RAM OR PROM CHIPS G 2 FIGURE G 1 Disassembling CR10 ...
Page 236: ...APPENDIX G CHANGING RAM OR PROM CHIPS G 4 FIGURE G 3 Jumper Settings and Locations ...
Page 237: ...APPENDIX G CHANGING RAM OR PROM CHIPS G 5 This is a blank page ...