4
Outdoor Unit Connected to Factory Approved
Indoor Unit
These outdoor units are carefully evaluated and listed with
specific indoor coils for proper system performance.
Install Adapter Tube
1. Remove plastic retainer holding outdoor piston in liquid
service valve.
2. Check outdoor piston size with matching number listed on
unit rating plate.
3. Locate plastic bag taped to unit containing adapter tube.
4. Remove Teflon
seal from bag and install on open end of
liquid service valve. (See Fig. 3.)
5. Remove adapter tube from bag and connect threaded nut
to liquid service valve. Tighten nut finger--tight and then
with wrench an additional 1/2 turn (15 ft--lb).
DO NOT
OVER TIGHTEN!
TEFLON
r
SEAL
SWEAT / FLARE
ADAPTER
PISTON
BODY
PISTON
A05226
Fig. 3
---
Liquid Service Valve with Sweat Adapter Tube
Refrigerant Tubing and Sweat Connections
Connect vapor tube to fitting on outdoor unit vapor service
valves (see Table 2). Connect liquid tubing to adapter tube on
liquid service valve. Use refrigerant grade tubing.
CAUTION
!
UNIT DAMAGE HAZARD
Failure to follow this caution may result in equipment
damage or improper operation.
Service valves must be wrapped in a heat--sinking
material such as a wet cloth while brazing.
CAUTION
!
UNIT DAMAGE HAZARD
Failure to follow this caution may result in equipment
damage or improper operation.
Installation of filter drier in liquid line is required.
Install Liquid Line Filter Drier Indoor
Refer to Fig. 4 and install filter drier as follows:
1. Braze 5 in. (127 mm) liquid tube to the indoor coil.
2. Wrap filter drier with damp cloth.
3. Braze filter drier to 5 in. (127 mm) long liquid tube from
step 1.
4. Connect and braze liquid refrigerant tube to the filter drier.
A05227
Fig. 4
---
Liquid Line Filter Drier
Leak Testing
Leak test all joints; indoors, outdoors, and refrigerant tubing.
Evacuate Refrigerant Tubing and Indoor Coil
CAUTION
!
UNIT DAMAGE HAZARD
Failure to follow this caution may result in equipment
damage or improper operation.
Never use the system compressor as a vacuum pump.
Refrigerant tubes and indoor coil should be evacuated using the
recommended deep vacuum method of 500 microns. An alternate
triple evacuation method may also be used. See Service Manual
for Triple Evacuation Method.
IMPORTANT
: Always break a vacuum with dry nitrogen.
Deep Vacuum Method
The deep vacuum method requires a vacuum pump capable of
pulling a vacuum of 500 microns and a vacuum gage capable of
accurately measuring this vacuum depth. The deep vacuum
method is the most positive way of assuring a system is free of air
and liquid water. (See Fig. 5. )
500
MINUTES
0
1
2
3
4
5
6
7
1000
1500
LEAK IN
SYSTEM
VACUUM TIGHT
TOO WET
TIGHT
DRY SYSTEM
2000
MICRONS
2500
3000
3500
4000
4500
5000
A95424
Fig. 5
---
Deep Vacuum Graph
264A
/265A