background image

AD9854 

 

 

Rev. E | Page 40 of 52 

POWER DISSIPATION AND THERMAL CONSIDERATIONS 

The AD9854 is a multifunctional, high speed device that targets 
a wide variety of synthesizer and agile clock applications. The 
numerous innovative features contained in the device each 
consume incremental power. If enabled in combination, the safe 
thermal operating conditions of the device may be exceeded. 
Careful analysis and consideration of power dissipation and 
thermal management is a critical element in the successful 
application of the AD9854. However, in most cases, disabling 
the inverse sinc filter prevents exceeding the maximum die 
temperature, because the inverse sinc filter consumes 
approximately 30% of the total power. 

The AD9854 is specified to operate within the industrial tem-
perature range of −40°C to +85°C. This specification is conditional, 
however, such that the absolute maximum junction temperature 
of 150°C is not exceeded. At high operating temperatures, extreme 
care must be taken when operating the device to avoid exceeding 
the junction temperature and potentially damaging the device. 

Many variables contribute to the operating junction  
temperature within the device, including 

 

Package style 

 

Selected mode of operation 

 

Internal system clock speed 

 

Supply voltage 

 

Ambient temperature 

The combination of these variables determines the junction 
temperature within the AD9854 for a given set of operating 
conditions. 

The AD9854 is available in two package styles: a thermally 
enhanced surface-mount package with an exposed heat sink and  
a standard (nonthermally enhanced) surface-mount package. The 
thermal impedance of these packages is 16.2°C/W and 38°C/W, 
respectively, measured under still air conditions. 

THERMAL IMPEDANCE 

The thermal impedance of a package can be thought of as a 
thermal resistor that exists between the semiconductor surface 
and the ambient air. The thermal impedance is determined by 
the package material and the physical dimensions of the package. 
The dissipation of the heat from the package is directly dependent 
on the ambient air conditions and the physical connection made 
between the IC package and the PCB.  

Adequate dissipation of heat from the AD9854 relies on all 
power and ground pins of the device being soldered directly to 
a copper plane on a PCB. In addition, the thermally enhanced 
package of the AD9854ASVZ has an exposed paddle on the 
bottom of the package that must be soldered to a large copper 
plane, which, for convenience, can be the ground plane. Sockets 
for either package style of the device are not recommended.  

JUNCTION TEMPERATURE CONSIDERATIONS 

The power dissipation (P

DISS

) of the AD9854 in a given 

application is determined by many operating conditions. Some 
of the conditions have a direct relationship with P

DISS

, such as 

supply voltage and clock speed, but others are less deterministic. 
The total power dissipation within the device and its effect on 
the junction temperature must be considered when using the 
device. The junction temperature of the device is given by 

(

Thermal Impedance × Power Consumption

) +  

Ambient Temperature

 

The maximum ambient temperature combined with the 
maximum junction temperature establishes the following power 
consumption limits for each package: 4.06 W for ASVZ models 
and 1.71 W for ASTZ models. 

Supply Voltage 

The supply voltage affects power dissipation and junction 
temperature because 

P

DISS

 = 

V

 × 

I

. Users should design for 3.3 V 

nominal; however, the device is guaranteed to meet specifications 
over the full temperature range and over the supply voltage 
range of 3.135 V to 3.465 V. 

Clock Speed 

Clock speed directly and linearly influences the total power 
dissipation of the device and therefore the junction temperature. As 
a rule, to minimize power dissipation, the user should select the 
lowest possible internal clock speed to support a given application. 
Typically, the usable frequency output bandwidth from a DDS is 
limited to 40% of the clock rate to ensure that the requirements 
of the output low-pass filter are reasonable. For a typical DDS 
application, the system clock frequency should be 2.5 times the 
highest desired output frequency. 

Mode of Operation 

The selected mode of operation of the AD9854 significantly 
influences the total power consumption. Although the AD9854 
offers many features targeting a wide variety of applications, the 
device is designed to operate with only a few features enabled at 
once for a given application. If multiple features are enabled at 
higher clock speeds, the maximum junction temperature of the 
die may be exceeded, severely limiting the long-term reliability of 
the device. Figure 62 and Figure 63 show the power requirements 
associated with each feature of the AD9854. These graphs should 
be used as a guide in determining power consumption for 
specific feature sets. 

Figure 62 shows the supply current consumed by the AD9854 
over a range of frequencies for two possible configurations. All 
circuits enabled means that the output scaling multipliers, the 
inverse sinc filter, the Q DAC, and the on-board comparator are 
enabled. Basic configuration means that the output scaling 

Summary of Contents for AD9854

Page 1: ...rrection Simplified control interfaces 10 MHz serial 2 or 3 wire SPI compatible 100 MHz parallel 8 bit programming 3 3 V single supply Multiple power down functions Single ended or differential input...

Page 2: ...rol DAC 30 Inverse Sinc Function 31 REFCLK Multiplier 31 Programming the AD9854 32 MASTER RESET 32 Parallel I O Operation 34 Serial Port I O Operation 34 General Operation of the Serial Interface 36 I...

Page 3: ...le Tone Mode 000 Section 17 Changes to Ramped FSK Mode 010 Section 18 Changes to Basic FM Chirp Programming Steps Section 23 Changes to Figure 50 27 Changes to Evaluation Board Operating Instructions...

Page 4: ...used for phase changes The 12 bit I and Q DACs coupled with the innovative DDS architecture provide excellent wideband and narrow band output SFDR The Q DAC can also be configured as a user programma...

Page 5: ...C IV 1 1 V DAC STATIC OUTPUT CHARACTERISTICS Output Update Speed Full I 300 200 MSPS Resolution 25 C IV 12 12 Bits I and Q Full Scale Output Current 25 C IV 5 10 20 5 10 20 mA I and Q DAC DC Gain Imb...

Page 6: ...C IV 10 10 SYSCLK cycles COMPARATOR INPUT CHARACTERISTICS Input Capacitance 25 C V 3 3 pF Input Resistance 25 C IV 500 500 k Input Current 25 C I 1 5 1 5 A Hysteresis 25 C IV 10 20 10 20 mV p p COMPA...

Page 7: ...et square or sine wave centered at one half the applied VDD or a 3 V TTL level pulse input 2 An internal 400 mV p p differential voltage swing equates to 200 mV p p applied to both REFCLK input pins 3...

Page 8: ...EDEC test board 3 Values of JA are provided for package comparison and PCB design considerations 4 Per JEDEC JESD51 6 heat sink soldered to PCB 5 Airflow increases heat dissipation effectively reducin...

Page 9: ...7 28 72 75 to 78 DGND Connections for the Digital Circuitry Ground Return Same potential as AGND 13 35 57 58 63 NC No Internal Connection 14 to 16 A5 to A3 Parallel Address Inputs for Program Register...

Page 10: ...ternal high speed comparator 43 VINN Voltage Input Negative The inverting input of the internal high speed comparator 48 IOUT1 Unipolar Current Output of I or the Cosine DAC Refer to Figure 3 49 IOUT1...

Page 11: ...THE OUTPUT VOLTAGE COMPLIANCE RATING COMPARATOR OUT AVDD DVDD DIGITAL IN AVOID OVERDRIVING DIGITAL INPUTS FORWARD BIASING ESD DIODES MAY COUPLE DIGITAL NOISE ONTO POWER PINS A DAC OUTPUTS B COMPARATO...

Page 12: ...0636 004 Figure 4 Wideband SFDR 19 1 MHz 0 START 0Hz 10 20 30 40 50 60 70 80 90 100 15MHz STOP 150MHz 00636 005 Figure 5 Wideband SFDR 39 1 MHz 0 START 0Hz 10 20 30 40 50 60 70 80 90 100 15MHz STOP 15...

Page 13: ...d SFDR 39 1 MHz 1 MHz BW 300 MHz REFCLK with REFCLK Multiplier Bypassed 0 CENTER 39 1MHz 10 20 30 40 50 60 70 80 90 100 5kHz SPAN 50kHz 00636 011 Figure 11 Narrow Band SFDR 39 1 MHz 50 kHz BW 300 MHz...

Page 14: ...lier 10 100 110 150 120 130 140 160 170 PHASE NOISE dBc Hz AOUT 80MHz AOUT 5MHz FREQUENCY Hz 10 1M 100 100k 10k 1k 00636 018 Figure 18 Residual Phase Noise 300 MHz REFCLK with REFCLK Multiplier Bypass...

Page 15: ...itter 40 MHz AOUT 300 MHz RFCLK with REFCLK Multiplier Bypassed CH1 500mV M 500ps CH1 980mV REF1 RISE 1 174ns C1 FALL 1 286ns 00636 023 Figure 23 Comparator Rise Fall Times FREQUENCY MHz 1200 0 AMPLIT...

Page 16: ...8 10 BIT ADC DIGITAL DEMODULATOR Rx BASEBAND DIGITAL DATA OUT 8 8 I Q MIXER AND LOW PASS FILTER VCA ADC ENCODE ADC CLOCK FREQUENCY LOCKED TO Tx CHIP SYMBOL PN RATE REFERENCE CLOCK 48 CHIP SYMBOL PN RA...

Page 17: ...0 8 TO 2 5GHz AD9854 QUADRATURE DDS DDS LO LO DDS LO 36dB TYPICAL SSB REJECTION 50 VOUT AD8346 QUADRATURE MODULATOR 90 COSINE DC TO 70MHz SINE DC TO 70MHz LO LO 0 00636 031 NOTES 1 FLIP DDS QUADRATURE...

Page 18: ...I DAC 1 2 Q DAC OR CONTROL DAC LOW PASS FILTER LOW PASS FILTER 00636 034 NOTES 1 IOUT APPROX 20mA MAX WHEN RSET 2k 2 SWITCH POSITION 1 PROVIDES COMPLEMENTARY SINUSOIDAL SIGNALS TO THE COMPARATOR TO PR...

Page 19: ...1 1 Chirp 1 0 0 BPSK In each mode some functions may be prohibited Table 6 lists the functions and their availability for each mode Single Tone Mode 000 This is the default mode when the MASTER RESET...

Page 20: ...ated via the 8 bit parallel programming port at a 100 MHz parallel byte rate or at a 10 MHz serial rate Incorporating this attribute permits FM AM PM FSK PSK and ASK operation in single tone mode Unra...

Page 21: ...raditional FSK Mode I O UD CLK F1 F2 0 FREQUENCY MODE TW1 TW2 010 RAMPED FSK F1 F2 000 DEFAULT 0 0 REQUIRES A POSITIVE TWOS COMPLEMENTVALUE RAMP RATE DFW FSK DATA PIN 29 00636 037 Figure 37 Ramped FSK...

Page 22: ...ter is activated when a logic level change occurs on the FSK input Pin 29 This counter is run at the system clock rate 300 MHz maximum The time period between each output pulse is given as N 1 System...

Page 23: ...dwell times at every frequency Use this function to automatically sweep between any two frequencies from dc to Nyquist In the ramped FSK mode with the triangle bit set high an automatic frequency swe...

Page 24: ...trol bit Register Address 1F hex is available to clear both the frequency accumulator ACC1 and the phase accumulator ACC2 When this bit is set high the output of the phase accumulator results in 0 Hz...

Page 25: ...0 Hz When the CLR ACC1 bit Register Address 1F hex is set high the 48 bit frequency accumulator ACC1 output is cleared with a retriggerable one shot pulse of one system clock duration The 48 bit delt...

Page 26: ...F1 000 DEFAULT 0 RAMP RATE RAMP RATE 011 CHIRP DELTA FREQUENCY WORD CLR ACC1 00636 045 Figure 45 Effect of CLR ACC1 in FM Chirp Mode CLR ACC2 F1 0 FREQUENCY MODE TW1 DPW 000 DEFAULT 0 RAMP RATE 011 CH...

Page 27: ...ange between dc and Nyquist Unless terminated by the user the chirp continues until power is removed When the chirp destination frequency is reached the user can choose any of the following actions St...

Page 28: ...solution to achieve the proper frequency range BPSK Mode 100 Binary biphase or bipolar phase shift keying is a means to rapidly select between two preprogrammed 14 bit output phase offsets that equall...

Page 29: ...ansferring This is an effect of the minimum high pulse time when I O UD CLK functions as an output ON OFF OUTPUT SHAPED KEYING OSK The on off OSK feature allows the user to control the amplitude vs ti...

Page 30: ...in 56 These are current output DACs with a full scale maximum output of 20 mA however a nominal 10 mA output current provides the best spurious free dynamic range SFDR performance The value of RSET is...

Page 31: ...in 61 provides the connection for the external zero compensation network of the PLL loop filter The zero compensation network consists of a 1 3 k resistor in series with a 0 01 F capacitor The other s...

Page 32: ...rt after the contents of the buffer memory are transferred to the register banks This transfer of information occurs synchronously to the system clock in one of two ways Internally at a rate programma...

Page 33: ...lta frequency word 23 16 00 14 Delta frequency word 15 8 00 15 Delta frequency word 7 0 00 16 5 Update clock 31 24 00 17 Update clock 23 16 00 18 Update clock 15 8 00 19 Update clock 7 0 40 1A 6 Ramp...

Page 34: ...and can be configured as a single pin I O SDIO or two unidirectional pins for input and output SDIO SDO Data transfers are supported in MSB or the LSB first format for up to 10 MHz When configured fo...

Page 35: ...36 052 Figure 52 Parallel Port Read Timing Diagram D 7 0 D1 D2 D3 SPECIFICATION VALUE DESCRIPTION tASU tDSU tADH tDHD 8 0ns 3 0ns ADDRESS SETUP TIME TO WR SIGNAL ACTIVE DATA SETUP TIME TO WR SIGNAL AC...

Page 36: ...controller expects the subsequent eight rising SCLK edges to be the instruction byte of the next communication cycle In addition an active high input on the IO RESET pin immediately terminates the cu...

Page 37: ...yte NOTES ON SERIAL PORT OPERATION The AD9854 serial port configuration bits reside in Bit 1 and Bit 0 of Register Address 20 hex It is important to note that the configuration changes immediately upo...

Page 38: ...the clocks are forced to dc effectively powering down the digital section In this state the PLL still accepts the REFCLK signal and continues to output the higher frequency CR 23 is reserved Write to...

Page 39: ...n is configured as an input CR 7 is reserved Write to 0 CR 6 is the inverse sinc filter bypass bit When this bit is set the data from the DDS block goes directly to the output shaped keying logic and...

Page 40: ...convenience can be the ground plane Sockets for either package style of the device are not recommended JUNCTION TEMPERATURE CONSIDERATIONS The power dissipation PDISS of the AD9854 in a given applica...

Page 41: ...ed operating temperature for the AD9854 in a given application Subtract this value from 150 C which is the maximum junction temperature allowed for the AD9854 For the extended industrial temperature r...

Page 42: ...Windows 95 Windows 98 Windows 2000 Windows NT and Windows XP Connect a printer cable from the PC to the AD9854 evaluation board printer port connector labeled J11 Hardware Preparation Use the schemat...

Page 43: ...Q signals appear as nearly pure sine waves and 90 out of phase with each other These filters are designed with the assumption that the system clock speed is at or near its maximum speed 300 MHz If the...

Page 44: ...al entries such as frequency and phase infor mation require pressing Enter to register the information For example if a new frequency is input but does not take effect when Load is clicked the user pr...

Page 45: ...06CG120J9B200 10 2 C34 C43 Capacitor 1206 1206 8 2 pF 50 V NPO 0 5 pF Yageo Corporation CC1206DRNPO9BN8R2 11 9 J1 J2 J3 J4 J5 J6 J7 J25 J26 SMB STR PC MNT N A N A Emerson Johnson 131 3701 261 12 1 J10...

Page 46: ...5552742 1 31 6 W1 W2 W3 W4 W8 W17 3 pin header SIP 3P N A N A Samtec Inc TSW 103 07 S S 32 10 W6 W7 W9 W10 W11 W12 W13 W14 W15 W16 2 pin header SIP 2P N A N A Samtec Inc TSW 102 07 S S 33 6 W1 W2 W3 W...

Page 47: ...F C27 0 1 F C8 0 1 F C44 0 1 F GND DVDD J10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 UDCLK WR RD PMO...

Page 48: ...CC 20 RESET UDCLK PMODE ORAMP FDATA U4 74HC125D GND 1G 1A 1Y 2G 2A 2Y VCC 4G 4A 4Y 3G 3A 3Y U2 GND 1 2 3 4 5 6 7 13 12 11 10 9 8 14 VCC VCC U10 W11 ADDR1 ADDR0 W14 W12 W13 W9 VCC R18 10k GND W15 VCC R...

Page 49: ...AD9854 Rev E Page 49 of 52 00636 070 Figure 66 Assembly Drawing 00636 071 Figure 67 Top Routing Layer Layer 1...

Page 50: ...AD9854 Rev E Page 50 of 52 00636 072 Figure 68 Power Plane Layer Layer 3 00636 073 Figure 69 Ground Plane Layer Layer 2...

Page 51: ...AD9854 Rev E Page 51 of 52 00636 074 Figure 70 Bottom Routing Layer Layer 4...

Page 52: ...ITY VIEW A ROTATED 90 CCW SEATING PLANE 7 3 5 0 61 60 1 80 20 41 21 40 VIEW A 1 60 MAX 0 75 0 60 0 45 16 20 16 00 SQ 15 80 14 20 14 00 SQ 13 80 0 65 BSC LEAD PITCH 0 38 0 32 0 22 TOP VIEW PINS DOWN PI...

Reviews: