background image

7

unwinds the coil spring then compresses it again in a

 

periodic sequence and thereby initiates the oscillation

 

of 

 

the 

 

copper 

 

wheel. 

 

The 

 

electromagnetic 

 

eddy 

 

cur-

 

rent 

 

brake 

 

(11) 

 

is 

 

used 

 

for 

 

damping. 

 

 

scale 

 

ring 

 

(4)

with slots and a scale in 2-mm divisions extends over

 

the 

 

outside 

 

of 

 

the 

 

oscillating 

 

system; 

 

indicators 

 

are

 

located on the exciter and resonator.
The device can also be used in shadow projection dem-

 

onstrations.

Natural frequency: 0.5 Hz approx.

0 to 1.3 Hz (continuously adjust-

Exciter frequency:
able)
Terminals:
Motor:

max. 24 V DC, 0.7 A,

  

via 4-mm safety sockets

 

Eddy current brake:

 

0 to 20 V DC, max. 2 A,
via 4-mm safety sockets

Scale ring:

300 mm Ø
400 mm x 140

Dimensions:

mm x 270 mm

4 kg

Ground:

2.1 Scope of supply

1 Torsional pendulum
2 Additional 10 g weights
2 Additional 20 g weights

3. Theoretical Fundamentals

3.1 Symbols used in the equations

Angular directional variable

D

=

Mass moment of inertia

=

J

Restoring torque

=

M

Period

=

T
T

0

Period of an undamped system

=

T

d

Period of the damped system

=

M

E

Amplitude of the exciter moment

=

Damping torque

=

b

Frequency

=

n

Time

=

t

Λ

Logarithmic decrement

=

δ

Damping constant

=

ϕ

Angle of deflection

=

ϕ

0

Amplitude at time t = 0 s

=

ϕ

n

Amplitude after n periods

=

ϕ

E

Exciter amplitude

=

ϕ

S

System amplitude

=

ω

0

Natural frequency of the oscillating system

=

ω

d

Natural frequency of the damped system

=

ω

E

Exciter angular frequency

=

ω

E

 

res

Exciter angular frequency for max. amplitude

=

Ψ

0S

System zero phase angle

=

3.2 Harmonic rotary oscillation

A harmonic oscillation is produced when the restoring
torque is proportional to the deflection. In the case of

harmonic rotary oscillations the restoring torque is
proportional to the deflection angle 

ϕ

:

M = D · 

ϕ

The coefficient of proportionality D (angular direction
variable) can be computed by measuring the deflec-
tion angle and the deflection moment.
If the period duration T is measured, the natural reso-
nant frequency of the system 

ω

0

 is given by

ω

0

 = 2 

π

/T

and the mass moment of inertia J is given by

ω

0

2

=

D

J

3.3 Free damped rotary oscillations

An oscillating system that suffers energy loss due to
friction, without the loss of energy being compensated
for by any additional external source, experiences a
constant drop in amplitude, i.e. the oscillation is
damped.
At the same time the damping torque b is proportional
to the deflectional angle 

ϕ

.

.

The following motion equation is obtained for the
torque at equilibrium

J

b

D

⋅ + ⋅ + ⋅ =

ϕ

ϕ

ϕ

..

.

0

b = 0 for undamped oscillation.
If the oscillation begins with maximum amplitude  

ϕ

0

at t = 0 s the resulting solution to the differential equa-
tion for light damping (

δ

² < 

ω

0

²) (oscillation) is as fol-

lows

ϕ 

ϕ

0

 ·  

e

δ

 ·t

 · cos (

ω

d

 · 

t

)

δ

 = b/2 J is the damping constant and

ω

ω

δ

d

0

2

2

=

the natural frequency of the damped system.
Under heavy damping (

δ

² > 

ω

0

²) the system does not

oscillate but moves directly into a state of rest or equi-
librium (non-oscillating case).
The period duration T

d

 of the lightly damped oscillat-

ing system varies only slightly from T

0

 of the undamped

oscillating system if the damping is not excessive.
By inserting 

t

 = 

n

 · 

T

d

  into the equation

 

ϕ 

ϕ

0

 ·  

e

δ

 ·t

 · cos (

ω

d

 · 

t

)

and 

ϕ

 = 

ϕ

n

 for the amplitude after n periods we ob-

tain the following with the relationship 

ω

d

 = 2 

π

/

T

d

ϕ
ϕ

δ

n

0

d

=

− ⋅

e

T

n

and thus from this the logarithmic decrement 

Λ

:

Λ = ⋅ = ⋅

=

δ

ϕ
ϕ

ϕ

ϕ

T

n

In

In

d

n

0

n

n+1

1

Reviews: