background image

9

5. Example experiments

5.1 

Free damped rotary oscillations

To determine the logarithmic decrement 

Λ

, the

amplitudes are measured and averaged out over
several runs. To do this the left and right deflec-
tions of the torsional pendulum are read off the
scale in two sequences of measurements.

The starting point of the pendulum body is located
at +15 or –15 on the scale. Take the readings for
five deflections.

From the ratio of the amplitudes we obtain 

Λ

 us-

ing the following equation

Λ =

In

ϕ

ϕ

n

n+1

 n

       

ϕ

   –

     

ϕ

   +

 0 –15

–15

–15

–15

15

15

15

15

 1 –14.8 –14.8 –14.8 –14.8 14.8 14.8 14.8 14.8
 2 –14.4 –14.6 –14.4 –14.6 14.4 14.4 14.6 14.4
 3 –14.2 –14.4 –14.0 –14.2 14.0 14.2 14.2 14.0
 4 –13.8 –14.0 –13.6 –14.0 13.8 13.8 14.0 13.8
 5 –13.6 –13.8 –13.4 –13.6 13.4 13.4 13.6 13.6

 

n

Ø 

ϕ

  –

Ø 

ϕ

 +

Λ

  –

Λ

  +

 0

–15

15

 1

–14.8

14.8

0.013

0.013

 2

–14.5

14.5

0.02

0.02

 3

–14.2

14.1

0.021

0.028

 4

–13.8

13.8

0.028

0.022

 5

–13.6

13.5

0.015

0.022

The average value for 

Λ

 comes to 

Λ

 = 0.0202.

For the pendulum oscillation period T the follow-
ing is true: 

t = n · T

. To measure this, record the

time for 10 oscillations using a stop watch and cal-
culate T.

 

T

 = 1.9 s

From these values the damping constant 

δ

 can be

determined from 

δ

 = 

Λ

 / T.

δ

 = 0.0106 s

–1

For the natural frequency 

ω

 the following holds

true

ω

π

δ

= 






2

T

2

2

ω

 = 3.307 Hz

5.2 Free damped rotary oscillations

To determine the damping constant 

δ

 as a func-

tion of the current 

Ι

 flowing through the electro-

magnets the same experiment is conducted with
an eddy current brake connected at currents of

Ι

 = 0.2 A, 0.4 A and 0.6 A.

ΙΙΙΙΙ

 = 0.2 A

 n

       

ϕ

   –

Ø 

ϕ

 –

    Λ

  –

 0 –15

–15

–15

–15

–15

 1 –13.6

–13.8

–13.8

–13.6 –13.7

0.0906

 2 –12.6

–12.8

–12.6

–12.4 –12.6

0.13

 3 –11.4

–11.8

–11.6

–11.4 –11.5

0.0913

 4 –10.4

–10.6

–10.4

–10.4 –10.5

0.0909

 5     9.2

  –9.6

  –9.6

  –9.6   –9.5

0.1

For T = 1.9 s and the average value of 

Λ

 = 0.1006

we obtain the damping constant: 

δ

 = 0.053 s

–1

ΙΙΙΙΙ

 = 0.4 A

 n

           

ϕ

  –

Ø

ϕ

 –

  Λ

  –

 0

–15

–15

–15

–15

–15

 1

–11.8 –11.8

–11.6

–11.6

–11.7

0.248

 2

  –9.2   –9.0

  –9.0

  –9.2

  –9.1

0.25

 3

  –7.2   –7.2

  –7.0

  –7.0

  –7.1

0.248

 4

  –5.8   –5.6

  –5.4

  –5.2

  –5.5

0.25

 5

  –4.2   –4.2

  –4.0

  –4.0

  –4.1

0.29

For T = 1.9 s and an average value of 

Λ

 = 0.257 we

obtain the damping constant: 

δ

 = 0.135 s

–1

ΙΙΙΙΙ

 = 0.6 A

 n

           

ϕ

  –

Ø

ϕ

 –

 Λ

  –

 0

–15

–15

–15

–15

–15

 1

 –9.2

  –9.4

  –9.2   –9.2

  –9.3

0.478

 2

 –5.4

  –5.2

  –5.6   –5.8

  –5.5

0.525

 3

 –3.2

  –3.2

  –3.2   –3.4

  –3.3

0.51

 4

 –1.6

  –1.8

  –1.8   –1.8

  –1.8

0.606

 5

 –0.8

  –0.8

  –0.8   –0.8

  –0.8

0.81

For T = 1.9 s and an average value of 

Λ

 = 0.5858

we obtain the damping constant: 

δ

 = 0.308 s

–1

5.3 Forced rotary oscillation

Take a reading of the maximum deflection of the
pendulum body to determine the oscillation am-
plitude as a function of the exciter frequency or
the supply voltage.

T = 1.9 s

Motor voltage V

ϕ

3

0.8

4

1.1

5

1.2

6

1.6

7

3.3

7.6

20.0

8

16.8

9

1.6

10

1.1

Reviews: