background image

© 2023

www.teamWavelength.com

10

WHY5640 TEMPERATURE CONTROLLER

+0.5 V

SENSOR BRIDGE AMPLIFIER

R

S

R

T

1

7

6

THERMISTOR

SETPOINT

TRIMPOT

WHY5640

ERR

AGND

SENS

Figure 8.  Thermistor Operation Circuit

Select setpoint resistor, R

S

, equal to the thermistor resistance 

at the desired operating temperature.

When the setpoint resistor, R

S

, and thermistor, R

T

, are equal 

resistance values, the Sensor Bridge Amplifier is balanced 

and the voltage on Pin 6 (ERR) will equal 1 V with reference 

to Pin 1 (AGND).

If the setpoint resistor, R

S

,  is  larger  than  the  thermistor 

resistance, R

T

, then the control loop will produce a cooling 

current  (OUTB)  since  the  temperature  sensed  by  the 

thermistor is above (hotter than) the setpoint temperature.

If the setpoint resistor, R

S

, is smaller than the thermistor 

resistance, R

T

, then the control loop will produce a heating 

current  (OUTA)  since  the  temperature  sensed  by  the 

thermistor is below (cooler than) the setpoint temperature.

RTDs

Figure 9

 illustrates how to connect the WHY5640 for 

operation with PTC (Positive Temperature Coefficient) RTD 

sensors. Resistors, R

2

, should be chosen large enough to 

prevent self heating of the RTD due to the current flowing 

through it. Most applications generally only require R

2

 to be 

double the resistance of the RTD.

+0.5 V

SENSOR BRIDGE AMPLIFIER

R

S

R

RTD

1

7

6

RTD

SETPOINT

TRIMPOT

WHY5640

ERR

AGND

SENS

R

2

R

2

Figure 9.  RTD Operation Circuit

Select setpoint resistor, R

S

, equal to the RTD resistance, 

R

RTD

, at the desired operating temperature.

When the setpoint resistor, R

S

, and RTD, R

RTD

, are equal 

in value, the Sensor Bridge Amplifier is balanced  and the 

voltage on Pin 6 (ERR) will equal 1 V with reference to Pin 1 

(AGND).

If the setpoint resistor, R

S

, is larger than the RTD resistance, 

R

RTD

,  then  the  control  loop  will  produce  a  heating  current 

since the temperature sensed by the RTD is below (cooler 

than) the setpoint temperature. 

If the setpoint resistor, R

S

, is smaller than the RTD resistance, 

R

RTD

,  then  the  control  loop  will  produce  a  cooling  current 

since the temperature sensed by the RTD is above (hotter 

than) the setpoint temperature. 

LM335s AND AD590s

Operating  instructions  can  be  found  in  the 

Additional 

Technical Information on page 17

.

TEMPERATURE SENSOR MOUNTING

The temperature sensor should be in good thermal contact 

with the device being temperature controlled. This requires 

that  the  temperature  sensor  be  mounted  using  thermal 

epoxy or some form of mechanical mounting and thermal 

grease.

Avoid placing the temperature sensor physically far from the 

thermoelectric. This is typically the cause for long thermal 

lag and creates a sluggish thermal response that produces 

considerable temperature overshoot.

STEP 4

 

Control Loop Proportional Gain & 

Integrator Time Constant - Pins 1, 3, 5, & 6 

Adjust  the  control  loop  parameters  by  setting  the  values 

of the two resistors and capacitors (R

G

, R

L

, and C

L

; refer 

to 

page 2

).  All  three  components  interact  to  set  the 

proportional gain and the integrator time constant.

Recommended values for the three components are shown 

in 

Table 5

 for common sensor and load combinations. A 

“fast”  load  can  change  temperature  quickly;  conversely 

a “slow” load is slower to respond to temperature change 

commands.

Equations  for  determining  the  proportional  gain  and 

integrator time constant are also provided in order to tune 

the controller to a variety of load conditions not covered in 

Table 5

.

The relationship  between the three components is 

summarized by the gain-integrator product, k

T

, in 

Equation 3

.

Содержание WHY5640

Страница 1: ...Supply Low Cost 0 005 C Stability typical Linear PI Temperature Control High 2 2 A Output Current Control Above and Below Ambient Master Booster Operation Temperature Setpoint Heat and Cool Current L...

Страница 2: ...the Wavelength Electronics website for the most accurate up to date and easy to use SOA calculator www teamwavelength com support design tools soa tc calculator Figure 1 shows the pin layout and descr...

Страница 3: ...electric Cooler TEC or resistive heater connected directly to Pin 9 and Pin 13 on the controller as shown in Figure 3 NOTE Use a max of 5 V power supply with the test load shown Values shown can simul...

Страница 4: ...on for the sensor RT and setpoint RS resistors 8 VDD Control Electronics Supply Input Power supply input for the WHY5640 s internal control electronics Supply range input for this pin is 5 to 26 VDC 9...

Страница 5: ...Negative Temperature Coefficient thermistors OUTPUTA provides the heating current to the TEC for NTC sensors Connect OUTPUTA to the positive thermoelectric terminal when using Positive Temperature Co...

Страница 6: ...o Pin 13 Full Temp Range IS 100 mA VS 0 7 VS 0 5 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 1 A VS 1 2 VS 1 0 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 2 A VS 1 6 VS 1 4 V P...

Страница 7: ...operates directly with thermistors or RTD temperature sensors The fundamental operating principle is that the controller adjusts the TEC drive current in order to change the temperature of the sensor...

Страница 8: ...UCTIONS STANDALONE NECESSARY EQUIPMENT The following equipment is required to configure the WHY5640 for basic operation WHY5640 Temperature Controller Thermistor or other temperature sensor Peltier ty...

Страница 9: ...6 7 Use one of the sensors in the sections listed below SENSOR SELECTION Select a temperature sensor that is responsive around the desired operating temperature The temperature sensor should produce...

Страница 10: ...th reference to Pin 1 AGND If the setpoint resistor RS is larger than the RTD resistance RRTD then the control loop will produce a heating current since the temperature sensed by the RTD is below cool...

Страница 11: ...alues can be fine tuned experimentally Start with component values from Table 5 and operate the temperature controller system to determine if the load temperature settling time is satisfactory If it i...

Страница 12: ...to Pin 1 AGND with a 1 5 k resistor when using RTDs LM335 type and AD590 type temperature sensors with a resistive heater Connect the resistive heater to Pins 9 and 13 to operate INCREASING OUTPUT CU...

Страница 13: ...OLLERS 3 WHY5640 CONTROLLERS 4 WHY5640 CONTROLLERS 5 WHY5640 CONTROLLERS CURRENT LIMIT SET RESISTOR K RA RB 0 0 0 0 0 1 60 0 1 0 2 0 3 0 4 0 5 1 69 0 2 0 4 0 6 0 8 1 0 1 78 0 3 0 6 0 9 1 2 1 5 1 87 0...

Страница 14: ...ll be operating within the internalheat dissipation Safe Operating Area SOA STEP 1 INSTALL WHY5640 ON THE WHY5690 WITH HEATSINK AND FAN Match up the notch Figure 12 on the WHY5640 with the silkscreen...

Страница 15: ...lectronics to use the WHY5690 with other sensors or ranges STEP 5 ATTACHING THE VDD AND VS POWER SUPPLIES Ensure that the controller can be safely operated by checking the SOA Calculator website The V...

Страница 16: ...board toggle switch The output is enabled when the green ON LED indicator is lit NOTE Before enabling the output make sure the RUN SET switch is set to the RUN position When enabled with this switch i...

Страница 17: ...an wire configuration may be different than shown Fan can be rotated on the WHY so the location of the wires matches custom PCB WHY5640 and WHY5690 assembly instructions Figure 15 Match up the notch s...

Страница 18: ...perating thermistor resistance RT For example for a 10 k thermistor operating at 25 C choose R1 to be 20 k NOTE Pin 9 OUTA is the heating current sink and Pin 13 OUTB is the cooling current sink Figur...

Страница 19: ...S given a desired operating temperature measured in Celsius Rs 2R3 0 5 273 15 TCelsius 1mV K 10 Resistor R3 is a fixed resistance value that can be used to scale or adjust the setpoint resistor RS Sel...

Страница 20: ...2 W 3 Heatsink and 3 5CFM fan required 2 W PWHY 9 W 4 Unsafe Operating Area PWHY Power internally dissipated in the WHY5640 1 2 3 4 5 10 15 20 25 0 0 0 5 1 0 1 5 2 0 Voltage Drop Across WHY VS VLOAD V...

Страница 21: ...VS VDD VS S1 SPST LIM B LIM A SGL TURN SGL TURN CCW 0 AMPS CW 2 AMPS SGL TURN P GAIN I TERM OUT A OUT B SENSOR SENSOR VM1 VM2 VDD VS PGND COMMON OUTA OUTB LIMB LIMA VM2 VM1 S S R8 1k R7 1k CCW 0 AMPS...

Страница 22: ...ple at 25 C a 10 k thermistor has a sensitivity of 43 mV C whereas an RTD sensor has a sensitivity of 4 mV C Proportional control term may be set too high Reduce the value of the proportional term For...

Страница 23: ...40 UNC Airflow Direction MECHANICAL SPECIFICATIONS All Tolerances are 5 unless noted WEIGHTS WHY5640 0 6 oz WHS302 Heatsink 0 5 oz WXC303 4 Fan 0 3 oz PIN DIAMETER 0 020 PIN LENGTH 0 157 12 PIN MATERI...

Страница 24: ...FAN COM VM2 VM1 CW 2 AMPS CCW 0 AMPS LIM B OUTPUT A SENSOR RUN RSET CW Decr CCW Incr sec I TERM PGND VS VDD OFF ENABLE ON WAVELENGTH ELECTRONICS For use with WHY5640 CW Decr CCW Incr P GAIN SET CCW D...

Страница 25: ...BLUE PGND 2 ORANGE VS 3 RED VDD 4 BLACK COM 5 WHITE VM1 6 GREEN VM2 CABLING SPECIFICATIONS These cables are included with the WHY5690 Evaluation Board WTC3293 00101 INPUT CABLE MOLEX 43645 0400 MICRO...

Страница 26: ...eering decompiling or disassembling this product NOTICE The information contained in this document is subject to change without notice Wavelength will not be liable for errors contained herein or for...

Отзывы: