Texas Instruments AN-1622 LM49100 Скачать руководство пользователя страница 16

Application Information

www.ti.com

15.6 PCB Layout and Supply Regulation Considerations for Driving 8

Load

Power dissipated by a load is a function of the voltage swing across the load and the load's impedance.
As load impedance decreases, load dissipation becomes increasingly dependent on the interconnect
(PCB trace and wire) resistance between the amplifier output pins and the load's connections. Residual
trace resistance causes a voltage drop, which results in power dissipated in the trace and not in the load
as desired. For example, 0.1

Ω

trace resistance reduces the output power dissipated by an 8

Ω

load from

158.3mW to 156.4mW. The problem of decreased load dissipation is exacerbated as load impedance
decreases. Therefore, to maintain the highest load dissipation and widest output voltage swing, PCB
traces that connect the output pins to a load must be as wide as possible.

Poor power supply regulation adversely affects maximum output power. A poorly regulated supply's output
voltage decreases with increasing load current. Reduced supply voltage causes decreased headroom,
output signal clipping, and reduced output power. Even with tightly regulated supplies, trace resistance
creates the same effects as poor supply regulation. Therefore, making the power supply traces as wide as
possible helps maintain full output voltage swing.

15.7 Bridge Configuration Explanation

The LM49100 drives a load, such as a loudspeaker, connected between outputs, LS+ and LS-.

This results in both amplifiers producing signals identical in magnitude, but 180° out of phase. Taking
advantage of this phase difference, a load is placed between LS- and LS+ and driven differentially
(commonly referred to as ”bridge mode”).

Bridge mode amplifiers are different from single-ended amplifiers that drive loads connected between a
single amplifier's output and ground. For a given supply voltage, bridge mode has a distinct advantage
over the single-ended configuration: its differential output doubles the voltage swing across the load.
Theoretically, this produces four times the output power when compared to a single-ended amplifier under
the same conditions. This increase in attainable output power assumes that the amplifier is not current
limited and that the output signal is not clipped.

Another advantage of the differential bridge output is no net DC voltage across the load. This is
accomplished by biasing LS- and LS+ outputs at half-supply. This eliminates the coupling capacitor that
single supply, single-ended amplifiers require. Eliminating an output coupling capacitor in a typical single-
ended configuration forces a single-supply amplifier's half-supply bias voltage across the load. This
increases internal IC power dissipation and may permanently damage loads such as loudspeakers.

15.8 Power Dissipation

Power dissipation is a major concern when designing a successful single-ended or bridged amplifier.

A direct consequence of the increased power delivered to the load by a bridge amplifier is higher internal
power dissipation. The LM49100 has a pair of bridged-tied amplifiers driving a handsfree loudspeaker, LS.
The maximum internal power dissipation operating in the bridge mode is twice that of a single-ended
amplifier. From

Equation 1

, assuming a 5V power supply and an 8

load, the maximum MONO power

dissipation is 634mW.

P

DMAX-LS

= 4(V

DD

)

2

(2

π

2

R

L

): Bridge Mode

(1)

The LM49100 also has a pair of single-ended amplifiers driving stereo headphones, HPR and HPL. The
maximum internal power dissipation for HPR and HPL is given by

Equation 2

. Assuming a 2.8V power

supply and a 32

load, the maximum power dissipation for L

OUT

and R

OUT

is 49mW, or 99mW total.

P

DMAX-HPL

= 4(V

DD

HP)

2

/ (2

π

2

R

L

): Single-ended Mode

(2)

The maximum internal power dissipation of the LM49100 occurs when all three amplifiers pairs are
simultaneously on; and is given by:

P

DMAX-TOTAL

= P

DMAX-LS

+ P

DMAX-HPL

+ P

DMAX-HPR

(3)

16

AN-1622 LM49100 Evaluation Board»

SNAA043A – October 2007 – Revised May 2013

Submit Documentation Feedback

Copyright © 2007–2013, Texas Instruments Incorporated

Содержание AN-1622 LM49100

Страница 1: ...pin and HPR pin carries the output signals from the two amplifiers and each of the other pins connecting to ground making this configuration single ended connections 6 Differential mono amplifier outp...

Страница 2: ...th a mono input signal The LM49100 features a 32 step digital volume control and ten distinct output modes The mixer volume control and device mode select are controlled through an I2 C compatible int...

Страница 3: ...d is an I2 C signal generation board and software With this board and the software the user can easily control the LM49100 s shutdown function mute and stereo volume control Figure 2 shows the softwar...

Страница 4: ...ation board VDDHP GND Headphone power supply for the headphone amplifier which creates split supplies for the positive voltage is converted by switch capacitor creating a negative voltage of equal mag...

Страница 5: ...udes controls for the amplifier s volume control individual channel shutdown and the mute function The control program s on screen user interface is shown in Figure 2 The Default button is used to ret...

Страница 6: ...r 0 1 F 0805 HPL 2 pin header 100 mil pitch 1x2 Header HPR 2 pin header 100 mil pitch 1x2 Header I2C 6 pin 6 pin header 100 mil pitch 2x3 Header Header Left Input 2 pin header 100 mil pitch 1x2 Header...

Страница 7: ...ration Board PCB Layout Figure 4 Top Overlay Figure 5 Top Layer 7 SNAA043A October 2007 Revised May 2013 AN 1622 LM49100 Evaluation Board Submit Documentation Feedback Copyright 2007 2013 Texas Instru...

Страница 8: ...yout www ti com Figure 6 Upper Inner Layer Figure 7 Lower Middle Layer 8 AN 1622 LM49100 Evaluation Board SNAA043A October 2007 Revised May 2013 Submit Documentation Feedback Copyright 2007 2013 Texas...

Страница 9: ...ion Board PCB Layout Figure 8 Bottom Layer Figure 9 Bottom Overlay 9 SNAA043A October 2007 Revised May 2013 AN 1622 LM49100 Evaluation Board Submit Documentation Feedback Copyright 2007 2013 Texas Ins...

Страница 10: ...5 respectively Typical THD N versus Output Power performance curves at VDD 3V 3 6V and 5V for 32 and 8 are shown in Figure 16 and Figure 17 respectively Figure 10 THD N vs Frequency Figure 11 THD N vs...

Страница 11: ...ti com Typical Demonstration Board Audio Performance Figure 16 THD N vs Output Power Figure 17 THD N vs Output Power RL 32 f 1kHz RL 8 f 1kHz BW 22kHz HP Mode 4 BW 22kHz LS Mode 1 11 SNAA043A October...

Страница 12: ...ed for extra headphone output attenuation Table 4 Output Mode Selection 1 Output Mode MC3 MC2 MC1 MC0 Handsfree Mono Output Right HP Output Left HP Output Number 0 0 0 0 0 SD SD SD 1 0 0 0 1 2 GM M SD...

Страница 13: ...0 1 0 13 5 19 5 12 0 1 0 1 1 12 18 13 0 1 1 0 0 10 5 16 5 14 0 1 1 0 1 9 15 15 0 1 1 1 0 7 5 13 5 16 0 1 1 1 1 6 12 17 1 0 0 0 0 4 5 10 5 18 1 0 0 0 1 3 9 19 1 0 0 1 0 1 5 7 5 20 1 0 0 1 1 0 6 21 1 0...

Страница 14: ...olling microcontroller and the slave is the LM49100 The I2 C address for the LM49100 is determined using the ADDR pin The LM49100 s two possible I2 C chip addresses are of the form 111110X10 binary wh...

Страница 15: ...I2 C Bus Format Figure 20 I2 C Timing Diagram 15 5 I2 C Interface Power Supply Pin VDDI2 C The LM49100 s I2 C interface is powered up through theVDD I2 C pin The LM49100 s I2 C interface operates at...

Страница 16: ...he single ended configuration its differential output doubles the voltage swing across the load Theoretically this produces four times the output power when compared to a single ended amplifier under...

Страница 17: ...emperature If these measures are insufficient a heat sink can be added to reduce JA The heat sink can be created using additional copper area around the package with connections to the ground pin s su...

Страница 18: ...ess shutdown function As discussed above choosing CIN no larger than necessary for the desired bandwidth helps minimize clicks and pops CB s value should be in the range of 4 to 5 times the value of C...

Страница 19: ...y 18 Revision History Rev Date Description 1 0 10 1907 Initial release 19 SNAA043A October 2007 Revised May 2013 AN 1622 LM49100 Evaluation Board Submit Documentation Feedback Copyright 2007 2013 Texa...

Страница 20: ...sponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related inf...

Отзывы: