You will need to determine how much power your tool or appliance requires to start up (starting
load) and it's continued running power requirements (continuous load). Power consumption is
rated in wattage (watts), or in amperes (amps), and this information is usually stamped on most
appliances and equipment. If this information is not indicated on the appliance or equipment,
check the owner's manual or contact the manufacturer to determine if the device you are using is
compatible with the Pure Sine Wave Inverter.
Calculating Loads (Wattage)
To calculate your continuous load when given in Amps:
Multiply: AMPS X 110(AC voltage) =WATTS
This formula yields a close approximation of the continuous load of your appliance.
To calculate approximate starting load:
Multiply: WATTS X 2= Starting Load
This formula yields a close approximation of the starting load of most appliances. However some
appliances can have a start up load of up to 7 times their continuous load. These are usually
tools and appliances using an induction motor, some examples are air conditioners, refrigerators,
well pumps and air compressors.
In most cases the start up load of the appliance or power tool determines whether your Inverter
has the capability to power it.
To determine whether the Sunforce Products Pro Series Pure Sine Wave will operate a particular
piece of equipment or appliance, it is advisable to run a test. All Pure Sine Wave inverters are
designed to automatically shut down in the event of a power overload. This protection feature
prevents damage to the unit while testing appliances and equipment with ratings in the correct
wattage range. If an appliance in the correct wattage range will not operate properly when first
connected to the Inverter, turn the Inverter rocker switch ON (I), OFF (O), and ON (I) again in
quick succession. If his procedure is not successful, it is likely that the inverter does not have the
required capacity to operate the appliance in question. (This approach is useful with a load that
may have a large internal capacitor (a TV for example) and the initial power draw is large enough
to trip the unit, but repeated restarting of the unit lets the capacitor/s in the load get charged a
little more each time, and then finally it will get past the big initial demand and will be able to run
the unit.
Connecting Your Inverter
Electrical connections
All contact joints MUST be clean in order to achieve low voltage loss due to contact resistance.
The lead posts on the battery should be cleaned with a terminal cleaner, a wire brush, or sand
paper. The posts should have a shiny finish when properly cleaned. The cable connectors should
be in the same clean state before hook up. Failure to do this will result in hotter then normal
electrical contacts and greater voltage loss to the inverter.
Wiring Specifications
AWG (American Wire Gauge) is a standard for wire sizes. The table below shows the properties
of a few of the sizes. For reference a 110v 1500W Toaster will have a power cord that is Gauge
16 size. For the same 1500W in a 12 Volt wire would need to be Gauge 1. 12 Volt source will
always require a larger diameter wire to deliver the same power as a 110V source would.