EN
EN
16
17
5. Have your helper position the model in various orientations (nose up, nose
down, nose toward the Tx, nose away from the Tx, etc.) while your helper
watches the Flight Log noting any correlation between the aircraft’s orientation
and frame losses. Do this for 1 minute. The timer on the transmitter can be used
here. For giant-scale aircraft, it’s recommended that the airplane be tipped up
on its nose and rotated 360 degrees for one minute then the data recorded. Next
place the airplane on its wheels and do a second test, rotating the aircraft in all
directions for one minute.
6. After one minute, a successful range check will have less than ten recorded
frame losses. Scrolling the Flight Log through the antenna fades (A, B, L, R)
allows you to evaluate the performance of each receiver. Antenna fades should
be relatively uniform. If a specific antenna is experiencing a high degree of fades
then that antenna should be moved to a different location.
7. A successful advanced test will yield the following:
H - 0 holds
F - less than 10 frame losses
A, B, R, L - Frame losses will typically be less than 100. It’s important to
compare the relative frame losses. If a particular receiver has a significantly
higher frame loss value (2 to 3X) then the test should be redone. If the same
results occur, move the offending receiver to a different location.
Flight Log
Spektrum’s Flight Log (SPM9540) is compatible with the AR12120 PowerSafe.
The Flight Log displays overall RF link performance as well as the individual
internal and external receiver link data. Additionally it displays receiver voltage.
Using the Flight Log
After a flight and before turning off the receiver or transmitter, plug the Flight Log
into the Data port on the PowerSafe. The screen will automatically display voltage
e.g. 6v2= 6.2 volts.
When the voltage reaches 4.8 volts or less, the screen will flash
indicating low voltage.
Press the button to display the following information:
A - Antenna fades on antenna A
B - Antenna fades on antenna B
L - Antenna fades on the left antenna
R - Antenna fades on the right antenna
F - Frame loss
H - Holds
Antenna fades—represents the loss of a bit of information on that specific antenna.
Typically it’s normal to have as many as 50 to 100 antenna fades during a flight.
If any single antenna experiences over 500 fades in a single flight, the antenna
should be repositioned in the aircraft to optimize the RF link.
Frame loss—represents simultaneous antenna fades on all attached receivers. If
the RF link is performing optimally, frame losses per flight should be less than 20.
The antenna fades that caused the frame loss are recorded and will be added to the
total antenna fades.
A Hold occurs when 45 consecutive frame losses occur. This takes about one
second. If a hold occurs during a flight, it’s important to reevaluate the system,
moving the antennas to different locations and/or checking to be sure the
transmitter and receivers are all working correctly. The frame losses that led to the
hold are not added to the total frame losses.
A servo extension can be used to allow the Flight Log to more conveniently be
plugged in without having to remove the aircraft’s hatch or canopy. On some
models, the Flight Log can be plugged in, attached and left on the model using
double-sided tape. This is common with helicopters, mounting the Flight Log
conveniently to the side frame.
QuickConnect™ with Brownout Detection
The remote receivers now included with the AR12120 feature QuickConnect with
Brownout Detection (Brownout Detection not available with DSMX). Should a
power interruption occur (brownout), the system will reconnect immediately when
power is restored and the LEDs on each connected receiver will flash indicating
a brownout (power interruption) has occurred (DSM2 only). Brownouts can
be caused by an inadequate power supply (weak battery or regulator), a loose
connector, a bad switch, an inadequate BEC when using an electronic speed
controller, etc. Brownouts occur when the receiver voltage drops below 3.2 volts
thus interrupting control as the servos and receiver require a minimum of 3.2 volts
to operate.
How Brownout Detection Works
When the receiver voltage drops below 3.2 volts the system drops out (ceases to
operate). When power is restored, the receivers will immediately attempt to reco-
nnect to the last two frequencies they were connected to. If the two frequencies are
present (the transmitter was left on) the system reconnects, typically in about 4ms.
The receivers will then blink indicating a brownout has occurred (DSM2 only). If
at any time the receiver is turned off then back on and the transmitter is not turned
off, the receivers will blink as a power interruption was induced by turning off the
power to the receiver (DSM2 only). In fact this simple test (turning the receiver
off then on) will allow you to determine if your system’s brownout detection is
functioning (DSM2 only).
If a brownout occurs in-flight it is vital that the cause of the brownout be determi-
ned and corrected. QuickConnect and Brownout Detection are designed to allow
you to safely fly through most short duration power interruptions. However, the
root cause of these interruptions must be corrected before the next flight to prevent
catastrophic safety issues.
Содержание PowerSafe AR12120
Страница 13: ...EN 24 Steven A Hall Vice President International Operations and Risk Management Horizon Hobby Inc...
Страница 26: ...DE 48...
Страница 51: ......