CALCULATION EXAMPLES
EXEMPLES DE CALCUL
ANWENDUNGSBEISPIELE
EJEMPLOS DE CÁLCULO
EXEMPLOS DE CÁLCULO
ESEMPI DI CALCOLO
REKENVOORBEELDEN
PÉLDASZÁMÍTÁSOK
PŘÍKLADY VÝPOČTŮ
RÄKNEEXEMPEL
LASKENTAESIMERKKEJÄ
UDREGNINGSEKSEMPLER
CONTOH-CONTOH PERHITUNGAN
陹ꩥ
꾽
PRINTED IN CHINA / IMPRIMÉ EN CHINE / IMPRESO EN CHINA
07HGK (TINSZ1308EHZZ)
1
J
100000
÷
3
=
[NORM1]
j
100000
z
3
=
U
U
33
'
333
.
33333
[FIX: TAB 2]
@
J
1
0
2
33
'
333
.
33
[SCI: SIG 2]
@
J
1
1
2
3
.
3
b
04
[ENG: TAB 2]
@
J
1
2
2
33
.
33
b
03
[NORM1]
@
J
1
3
33
'
333
.
33333
3
÷
1000
=
[NORM1]
j
3
z
1000
=
U
0
.
003
[NORM2]
@
J
1
4
3
.
b
-
03
[NORM1]
@
J
1
3
0
.
003
2
U
2
3
⎯ + ⎯ =
5
4
j
2
W
5
r
+
W
3
r
4
=
3
1
⎯
20
U
23
⎯
20
U
1
.
15
U
3
1
⎯
20
P
3
×
P
5
=
@
*
3
r
k
@
*
5
=
H
15
U
3
.
872983346
P
2
÷
3
+
P
5
÷
5
=
@
*
2
r
z
3
+
@
*
5
r
z
5
=
3
Q
5+5
Q
2
⎯
15
U
0
.
918618116
8
−
2
−
3
4
×
5
2
=
8
m
S
2
r
&
3
m
4
r
k
5
A
=
63
-
2024
⎯
64
U
129599
-
⎯
64
U
-
2
'
024
.
984375
o
8
m
S
2
&
3
m
4
k
5
A
=
-
2
'
024
.
984375
U
-
2024
m
63
m
64
U
-
129599
m
64
(12
3
)
1
⎯
4
=
(
12
m
3
r
)
m
1
W
4
=
6
.
447419591
o
(
12
m
3
)
m
1
W
4
=
6
.
447419591
8
3
=
8
@
1
=
512
.
p
49
−
4
p
81
=
@
*
49
r
&
4
@
D
81
=
4
.
o
@
*
49
&
4
@
D
81
=
4
.
3
p
27
=
@
q
27
=
3
.
4!
=
4
@
B
=
24
.
10
P
3
=
10
@
e
3
=
720
.
5
C
2
=
5
@
c
2
=
10
.
500
×
25%
=
500
k
25
@
a
125
.
120
÷
400
=
?%
120
z
400
@
a
30
.
500
+
(500
×
25%)
=
500
+
25
@
a
625
.
400
−
(400
×
30%)
=
400
&
30
@
a
280
.
|
5
−
9
|
=
@
W
5
&
9
=
4
.
o
@
W
(
5
&
9
)
=
4
.
θ
=
sin
−
1
x
,
θ
=
tan
−
1
x
θ
=
cos
−
1
x
DEG
−
90
≤
θ
≤
90
0
≤
θ
≤
180
RAD
− π
⎯
2
≤
θ
≤
π
⎯
2
0
≤
θ
≤
π
GRAD
−
100
≤
θ
≤
100
0
≤
θ
≤
200
7
F
G
2
8
(
x
2
−
5)
dx
j
F
2
u
8
r
;
X
A
&
5
n
=
100
=
138.
n
=
10
l
l
H
10
=
138.
o
j
F
;
X
A
&
5
H
2
H
8
)
=
138.
l
l
H
10
=
138.
−
−
1
1
(
x
2
−
1)
dx
+
1
3
(
x
2
−
1)
dx
=
S
F
S
1
u
1
r
;
X
A
&
1
r
+
F
1
u
3
r
;
X
A
&
1
=
8.
11
6
+
4
=
ANS
j
6
+
4
=
10
.
ANS
+
5
=
+
5
=
15
.
8
×
2
=
ANS
8
k
2
=
16
.
ANS
2
=
A
=
256
.
44
+
37
=
ANS
44
+
37
=
81
.
ANS
=
@
*
=
9
.
12
W
k
1 4
3
⎯ + ⎯ =
2 3
j
3
@
k
1
d
2
r
+
W
4
d
3
=
5
4
⎯
6
U
29
⎯
6
U
4.833333333
o
3
W
1
W
2
+
4
W
3
=
*
4
m
5
m
6
U
29
m
6
U
4.833333333
10
2
⎯
3
=
@
Y
2
W
3
=
4.641588834
(
7
⎯
5
)
5
=
7
W
5
r
m
5
=
16807
⎯
3125
o
7
W
5
m
5
=
16807
m
3125
1
⎯
8
3
=
@
q
1
W
8
=
1
⎯
2
64
⎯
225
=
@
*
64
W
225
=
8
⎯
15
2
3
⎯
3
4
=
2
@
1
W
3
m
4
=
8
⎯
81
o
2
@
1
W
(
3
m
4
)
=
8
m
81
1.2
⎯
2.3
=
1
.
2
W
2
.
3
=
12
⎯
23
1°2’3”
⎯
2
=
1
[
2
[
3
W
2
=
0(31
q
1
.
5
"
1
×
10
3
⎯
2
×
10
3
=
1
`
3
W
2
`
3
=
1
⎯
2
7
⇒
A
j
7
x
A
7
.
4
⎯
A
=
4
W
;
A
=
4
⎯
7
1.25
+
2
⎯
5
=
1
.
25
+
2
W
5
=
13
1
⎯
20
U
33
⎯
20
U
1
.
65
o
1
.
25
+
2
W
5
=
1
.
65
U
1
m
13
m
20
U
33
m
20
* 4
m
5
m
6 =
5
4
⎯
6
13
z
r
g
h
/
d
n
4
p
x
C
DEC (25)
BIN
j
@
/
25
@
z
BIN
11001
HEX (1AC)
@
h
1AC
BIN
@
z
BIN
110101100
PEN
@
r
PEN
3203
OCT
@
g
OCT
654
DEC
@
/
428
.
(1010
−
100)
×
11
=
[BIN]
@
z
(
1010
&
100
)
k
11
=
BIN
10010
BIN (111)
→
NEG
d
111
=
BIN
1111111001
HEX (1FF)
+
OCT (512)
=
@
h
1FF
@
g
+
512
=
OCT
1511
HEX (?)
@
h
HEX
349
2FEC
−
2C9E
⇒
M
1
+
) 2000
−
1901
⇒
M
2
—
M
=
j
x
M
@
h
2FEC
&
2C9E
m
HEX
34
E
2000
&
1901
m
HEX
6
FF
t
M
j
x
M
HEX
A
4
D
1011 AND 101
=
[BIN]
@
z
1011
4
101
=
BIN
1
5A OR C3
=
[HEX]
@
h
5A
p
C3
=
HEX
DB
NOT 10110
=
[BIN]
@
z
n
10110
=
BIN
1111101001
24 XOR 4
=
[OCT]
@
g
24
x
4
=
OCT
20
B3 XNOR 2D
=
[HEX]
@
h
B3
C
2D
=
HEX
FFFFFFFF
61
→
DEC
@
/
-
159
.
14
[
:
7°31’49.44”
[10]
j
7
[
31
[
49
.
44
@
:
663
7
⎯
1250
123.678
[60]
123
.
678
@
:
123(40
q
40
.
8
"
3h 30m 45s +
6h 45m 36s = [60]
3
[
30
[
45
+
6
[
45
[
36
=
10(16
q
21
."
1234°56’12” +
0°0’34.567” = [60]
1234
[
56
[
12
+
0
[
0
[
34
.
567
=
1234(56
q
47
."
3h 45m – 1.69h
= [60]
3
[
45
&
1
.
69
=
@
:
2(3
q
36
."
sin 62°12’24”
= [10]
v
62
[
12
[
24
=
0
.
884635235
24°
[”]
24
[
N
4
86
q
400
.
1500”
[’]
0
[
0
[
1500
N
5
25
.
15
u
E
H
(
x
= 6
y
= 4
(
r
=
θ
= [°]
j
6
H
4
@
u
r
:
{
:
7
.
211102551
33
.
69006753
(
r
= 14
θ
= 36 [°]
(
x
=
y
=
14
H
36
@
E
X
:
Y
:
11
.
32623792
8
.
228993532
16
K
L
V
0
=
15.3 m/s
t
=
10 s
V
0
t
+
1
⎯
2
gt
2
=
? m
j
15
.
3
k
10
+
2
@
Z
k
K
03
k
10
A
=
U
643
.
3325
125 yd
=
? m
j
125
@
L
05
=
U
U
114
.
3
• Physical constants and metric conversions are shown in the tables.
• Les constantes physiques et les conversions des unités sont
indiquées sur les tableaux.
• Physikalische Konstanten und metriche Umrechnungen sind in
der Tabelle aufgelistet.
• Las constants fi sicas y conversiones métricas son mostradas
en las tables.
• Constantes fi sicas e conversões métricas estão mostradas nas
tablelas.
• La constanti fi siche e le conversioni delle unità di misura vengono
mostrate nella tabella.
• De natuurconstanten en metrische omrekeningen staan in de
tabellen hiernaast.
•
A fi zikai konstansok és a metrikus átváltások a táblázatokban
találhatók.
•
Fyzikální konstanty a převody do metrické soustavy jsou uvedeny
v tabulce.
• Fysikaliska konstanter och metriska omvandlingar visas i tabellerna.
• Fysikaaliset vakiot ja metrimuunnokset näkyvät taulukoista.
• Fysiske konstanter og metriske omskrivninger vises i tabellen.
•
•
• Konstanta fi sika dan konversi metrik diperlihatkan di dalam tabel.
•
斲殯͑儆垫穢͑恂庲͑旇朞͑愕͑埮氊͑筞斶͑愯憛汆͑埪汒͑祢歆͑償枻城埪͟
K
01–52
01:
c
,
c
0
(m s
–1
)
19:
µ
B
(J T
–1
)
37:
e
V
(J)
02:
G
(m
3
kg
–1
s
–2
) 20:
µ
e
(J T
–1
)
38:
t
(K)
03:
g
n
(m s
–2
)
21:
µ
N
(J T
–1
)
39:
AU
(m)
04:
m
e
(kg)
22:
µ
p
(J T
–1
)
40:
pc
(m)
05:
m
p
(kg)
23:
µ
n
(J T
–1
)
41:
M
(
12
C) (kg mol
–1
)
06:
m
n
(kg)
24:
µ
µ
(J T
–1
)
42:
h
-
(J s)
07:
m
µ
(kg)
25:
λ
c
(m)
43:
E
h
(J)
08:
1
u
(kg)
26:
λ
c
,
p
(m)
44:
G
0
(s)
09:
e
(C)
27:
σ
(W m
–2
K
–4
)
45:
α
–1
10:
h
(J s)
28:
N
A
,
L
(mol
–1
)
46:
m
p
/
m
e
11:
k
(J K
–1
)
29:
V
m
(m
3
mol
–1
)
47:
M
u
(kg mol
–1
)
12:
µ
0
(N A
–2
)
30:
R
(J mol
–1
K
–1
) 48:
λ
c
,
n
(m)
13:
ε
0
(F m
–1
)
31:
F
(C mol
–1
)
49:
c
1
(W m
2
)
14:
r
e
(m)
32:
R
K
(
Ω
)
50:
c
2
(m K)
15:
α
33: –
e
/
m
e
(C kg
–1
)
51:
Z
0
(
Ω
)
16:
a
0
(m)
34:
h
/2
m
e
(m
2
s
–1
)
52: atm
(Pa)
17:
R
∞
(m
–1
)
35:
γ
p
(s
–1
T
–1
)
18:
Φ
0
(Wb)
36:
K
J
(Hz V
–1
)
x
@
L
01–44
01: in
→
cm
16: kg
→lb
31: cal
IT
→
J
02: cm
→
in
17:
°
F
→
°
C
32: J
→
cal
IT
03: ft
→
m
18:
°C
→
°F
33: hp
→
W
04: m
→
ft
19: gal (US)
→
L
34: W
→
hp
05: yd
→
m
20: L
→
gal (US)
35: ps
→
W
06: m
→
yd
21: gal (UK)
→
L
36: W
→
ps
07: mi
→
km
22: L
→
gal (UK)
37: kgf/cm
2
→
Pa
08: km
→
mi
23: fl oz(US)
→
mL
38: Pa
→
kgf/cm
2
09: n mi
→
m
24: mL
→
fl oz(US)
39: atm
→
Pa
10: m
→
n mi
25: fl oz(UK)
→
mL
40: Pa
→
atm
11: acre
→
m
2
26: mL
→
fl oz(UK)
41: mmHg
→
Pa
12: m
2
→
acre
27: cal
th
→
J
42: Pa
→
mmHg
13: oz
→
g
28: J
→
cal
th
43: kgf·m
→
N·m
14: g
→
oz
29: cal
15
→
J
44: N·m
→
kgf·m
15: lb
→
kg
30: J
→
cal
15
17
N
(ENG)
100 m
×
10 k
=
?
100
N
3
4
k
10
N
3
0
=
1
'
000
.
18
n
J
[FIX, TAB
=
1]
j
@
J
1
0
1
0
.
0
5
÷
9
=
ANS
5
z
9
=
5
⎯
9
U
0
.
6
ANS
×
9
=
k
9
=
*
1
5
.
0
5
z
9
=
5
⎯
9
U
0
.
6
[MDF]
@
n
3
⎯
5
ANS
×
9
=
k
9
=
*
2
2
5
⎯
5
U
U
5
.
4
[NORM1]
@
J
1
3
5
.
4
*
1
5
⎯
9
×
9 = 5.5555555555555
×
10
−
1
×
9
*
2
3
⎯
5
×
9 = 0.6 × 9
19
N
(ALGB)
f
(
x
)
=
x
3
−
3
x
2
+
2
j
;
X
@
1
-
3
;
X
A
+
2
x
=
−
1
N
1
S
1
e
-
2
.
x
=
−
0.5
N
1
S
0
.
5
e
1
1
⎯
8
A
2
+ B
2
@
*
;
A
A
+
;
B
A
A
=
2, B
=
3
N
1
2
e
3
e
H
13
A
=
2, B
=
5
N
1
e
5
e
H
29
20
N
(SOLVER)
sin
x
−
0.5
j
v
;
X
-
0
.
5
Start
=
0
N
2
0
e
e
30
.
Start
=
180
e
180
e
e
150
.
21
_
H
R
v
p
c
g
o
Q
G
s
i
j
h
f
a
b
S
V
U
DATA
95
80
80
75
75
75
50
b
1
0
@
Z
S#a# 0
[
SD
]
0
.
95
_
DATA SET=
1
.
80
_
DATA SET=
2
.
_
DATA SET=
3
.
75
H
3
_
DATA SET=
4
.
50
_
DATA SET=
5
.
x
–
=
t
R
x
–
=
75
.
71428571
σ
x
=
t
p
σ
x
=
12
.
37179148
n
=
t
c
n
=
7
.
Σ
x
=
t
g
Σ
x
=
530
.
Σ
x
2
=
t
o
Σ
x
2
=
41
'
200
.
sx
=
t
v
sx
=
13
.
3630621
sx
2
=
A
=
sx
2
=
178
.
5714286
(95
−
x
– )
⎯ ×
10
+
50
=
sx
(
95
&
;
R
)
z
;
v
k
10
+
50
=
64
.
43210706
24
N
(
→
t, P
(
, Q
(
, R
(
)
DATA
x
F
20
30
40
50
60
70
80
90
1
3
5
8
13
10
7
3
b
1
0
@
Z
S#a# 0
[
SD
]
0
.
20
H
1
_
DATA SET=
1
.
30
H
3
_
DATA SET=
2
.
40
H
5
_
DATA SET=
3
.
50
H
8
_
DATA SET=
4
.
60
H
13
_
DATA SET=
5
.
70
H
10
_
DATA SET=
6
.
80
H
7
_
DATA SET=
7
.
90
H
3
_
DATA SET=
8
.
x
–
=
t
R
x
–
=
60
.
4
σ
x
=
t
p
σ
x
=
16
.
48757108
x
=
35
P(t)
?
N
2
35
N
1
)
=
0
.
061713
x
=
75
Q(t)
?
N
3
75
N
1
)
=
0
.
312061
x
=
85
R(t)
?
N
4
85
N
1
)
=
0
.
067845
t
=
1.5
R(t)
?
N
4
1
.
5
)
=
0
.
066807
25
b
(CPLX)
(12
−
6
i
)
+
(7
+
15
i
)
−
(11
+
4
i
)
=
b
3
12
-
6
O
+
7
+
15
O
-
(
11
+
4
O
)
=
8
.
+5
.
K
6
×
(7
−
9
i
)
×
(
−
5
+
8
i
)
=
6
k
(
7
-
9
O
)
k
(
S
5
+
8
O
)
=
222
.
+606
.
K
16
×
(sin 30°
+
i
cos 30°)
÷
(sin 60°
+
i
cos 60°)
=
16
k
(
v
30
+
O
$
30
)
z
(
v
60
+
O
$
60
)
=
13
.
85640646
+8
.
K
y
x
A
B
r
r
2
θ
1
θ
2
r
1
θ
r
1
=
8,
θ
1
=
70°
r
2
=
12,
θ
2
=
25°
r
=
?,
θ
=
?°
@
u
8
Q
70
+
12
Q
25
=
18
.
5408873
∠
42
.
76427608
1
+
i
r
=
?,
θ
=
?°
@
E
1
+
O
=
1
.
+1
.
K
@
u
1
.
414213562
∠
45
.
(2
−
3
i
)
2
=
@
E
(
2
-
3
O
)
A
=
-
5
.
-
12
.
K
1
⎯
1
+
i
=
(
1
+
O
)
@
Z
=
0
.
5
-
0
.
5
K
CONJ(5
+
2
i
)
=
N
1
(
5
+
2
O
)
=
5
.
-
2
.
K
EL-W506
EL-W516
EL-W546
sin 45
=
v
45
=
Q
2
⎯
2
U
0
.
707106781
2cos
−
1
0.5 [rad]
=
@
J
0
1
2
@
^
0
.
5
=
2
⎯
J
3
U
2
.
094395102
3
u
d
@
Z
0
.
①
3(5
+
2)
=
3
(
5
+
2
)
=
21
.
②
3
×
5
+
2
=
3
k
5
+
2
=
17
.
③
(5
+
3)
×
2
=
(
5
+
3
)
k
2
=
16
.
①
@
u
21
.
②
d
17
.
③
d
16
.
②
u
17
.
4
+
&
k
z
(
)
S
`
45
+
285
÷
3
=
j
45
+
285
z
3
=
140
.
(18
+
6)
÷
(15
−
8)
=
(
18
+
6
)
z
(
15
&
8
=
3
3
⎯
7
42
×
−
5
+
120
=
42
k
S
5
+
120
=
-
90
(5
×
10
3
)
÷
(4
×
10
−
3
)
=
5
`
3
z
4
`
S
3
=
1
'
250
'
000
.
5
34 + 57
=
34
+
57
=
91
.
45 + 57
=
45
=
102
.
68 × 25
=
68
k
25
=
1
'
700
.
68 × 40
=
40
=
2
'
720
.
6
v
$
t
w
^
y
s
H
>
i
l
O
"
V
Y
Z
A
1
*
m
D
q
B
e
c
a
W
@
P
0
0
.
sin 60 [°]
=
j
v
60
=
Q
3
⎯
2
U
0
.
866025403
cos
π
⎯
4
[rad]
=
@
J
0
1
$
@
s
W
4
=
Q
2
⎯
2
U
0
.
707106781
tan
−
1
1 [g]
=
@
J
0
2
@
y
1
=
50
.
@
J
0
0
(cosh 1.5
+
sinh 1.5)
2
=
j
(
H
$
1
.
5
+
H
v
1
.
5
)
A
=
20
.
08553692
5
tanh
−
1
⎯ =
7
@
>
t
(
5
z
7
)
=
0
.
895879734
ln 20
=
i
20
=
2
.
995732274
log 50
=
l
50
=
1
.
698970004
log
2
16384
=
@
O
2
r
16384
=
14
.
o
@
O
2
H
16384
)
=
14
.
e
3
=
@
"
3
=
20
.
08553692
1
÷
e
=
1
z
;
V
=
0
.
367879441
10
1.7
=
@
Y
1
.
7
=
50
.
11872336
1
1
⎯ + ⎯ =
6
7
6
@
Z
+
7
@
Z
=
13
⎯
42
U
0
.
309523809
d
(
x
4
−
0.5
x
3
+
6
x
2
)
⎯
dx
@
G
;
X
m
4
r
&
0
.
5
;
X
@
1
+
6
;
X
A
(
x
= 2
d
x
= 0.00002
r
2
=
50.
(
x
= 3
d
x
= 0.001
l
l
N
3
H
0
.
001
=
130.5000029
o
@
G
;
X
m
4
&
0
.
5
;
X
@
1
+
6
;
X
A
H
2
)
=
50.
l
l
N
3
H
0
.
001
=
130.5000029
8
I
5
∑
x
= 1
(
x
+
2)
j
@
I
1
r
5
r
;
X
+
2
n
=
1
=
25
.
n
=
2
l
l
H
2
=
15
.
o
j
@
I
;
X
+
2
H
1
H
5
)
=
25
.
l
l
H
2
=
15
.
9
]
90°
→
[rad]
j
90
@
]
1
⎯
J
2
→
[g]
@
]
100
.
→
[°]
@
]
90
.
sin
−
1
0.8 = [°]
@
w
0
.
8
=
53
.
13010235
→
[rad]
@
]
0
.
927295218
→
[g]
@
]
59
.
03344706
→
[°]
@
]
53
.
13010235
10
;
t
x
m
M
<
[
]
T
X
I
J
K
L
8
×
2
⇒
M
j
8
k
2
x
M
16
.
24
÷
(8 × 2)
=
24
z
;
M
=
1
1
⎯
2
(8 × 2) × 5
=
;
M
k
5
=
80
.
0
⇒
M
j
x
M
0
.
$150
×
3
⇒
M
1
+
) $250: M
1
+
250
⇒
M
2
−
) M
2
×
5%
–
M
=
150
k
3
m
450
.
250
m
250
.
t
M
k
5
@
a
@
M
35
.
t
M
665
.
$1
=
¥110 (110
⇒
Y)
110
x
Y
110
.
¥26,510
=
$?
26510
z
;
Y
=
241
.
$2,750
=
¥?
2750
k
;
Y
=
302
'
500
.
r
=
3 cm (r
⇒
Y)
3
x
Y
3
.
π
r
2
=
?
@
s
;
Y
A
=
U
28.27433388
24
⎯
4
+
6
=
2
2
⎯
5 …(A)
24
z
(
4
+
6
)
=
2
2
⎯
5
3
×
(A)
+
60
÷
(A)
=
3
k
;
<
+
60
z
;
<
=
1
32
⎯
5
π
r
2
⇒
F1
r
=
3 cm (r
⇒
Y)
4
3
V
=
?
@
s
;
Y
A
x
[
j
F1
3
x
Y
3
.
t
[
k
4
z
3
=
U
37
.
69911184
sinh
−
1
⇒
D1
x
I
@
>
v
sinh
−
1
0.5
=
I
0
.
5
=
0
.
481211825
DATA
x
y
2
2
12
21
21
21
15
5
5
24
40
40
40
25
b
1
1
@
Z
S#a# 1
[
LINE
]
0
.
2
H
5
_
DATA SET=
1
.
_
DATA SET=
2
.
12
H
24
_
DATA SET=
3
.
21
H
40
H
3
_
DATA SET=
4
.
15
H
25
_
DATA SET=
5
.
a
=
t
a
a
=
1
.
050261097
b
=
t
b
b
=
1
.
826044386
r
=
t
f
r
=
0
.
995176343
sx
=
t
v
sx
=
8
.
541216597
sy
=
t
G
sy
=
15
.
67223812
x
=
3
y
´
=
?
3
@
U
3
y
´
6
.
528394256
y
=
46
x
´
=
?
46
@
V
46
x
´
24
.
61590706
DATA
x
y
12
8
5
23
15
41
13
2
200
71
b
1
2
@
Z
S#a# 2
[
QUAD
]
0
.
12
H
41
_
DATA SET=
1
.
8
H
13
_
DATA SET=
2
.
5
H
2
_
DATA SET=
3
.
23
H
200
_
DATA SET=
4
.
15
H
71
_
DATA SET=
5
.
a
=
t
a
a
=
5
.
357506761
b
=
t
b
b
=
-
3
.
120289663
c
=
t
S
c
=
0
.
503334057
x
=
10
y
´
=
?
10
@
U
10
y
´
24
.
4880159
y
=
22
x
´
=
?
22
@
V
22
x
´
1
:
2
:
9
.
63201409
-
3
.
432772026
22
_
H
u
d
#
DATA
20
30
40
40
50
DATA
30
45
45
45
60
b
1
0
@
Z
S#a# 0
[
SD
]
0
.
20
_
DATA SET=
1
.
30
_
DATA SET=
2
.
40
H
2
_
DATA SET=
3
.
50
_
DATA SET=
4
.
d
@
#
DATA SET=
3
.
d
d
d
45
_
X:
45
.
3
_
F:
■
3
.
d
60
_
X:
60
.
j
23
x
–
=
Σ
x
⎯
n
σ
x
=
Σ
x
2
−
nx
–
2
⎯
n
sx
=
Σ
x
2
−
nx
–
2
⎯
n
−
1
Σ
x
=
x
1
+
x
2
+
…
+
x
n
Σ
x
2
=
x
1
2
+
x
2
2
+
…
+
x
n
2
y
–
=
Σ
y
⎯
n
σ
y
=
Σ
y
2
−
ny
–
2
⎯
n
sy
=
Σ
y
2
−
ny
–
2
⎯
n
−
1
Σ
xy
=
x
1
y
1
+
x
2
y
2
+
…
+
x
n
y
n
Σ
y
=
y
1
+
y
2
+
…
+
y
n
Σ
y
2
=
y
1
2
+
y
2
2
+
…
+
y
n
2