EL-506W (TINSExxxxEHZZ)_ENGLISH_OpExam
k&~£pnzw^
¢PZWvrab©
xy≠°
(
→
t, P(, Q(, R()
DATA
95
m10
0.
80
95
k
1.
80
80
k
2.
75
k
3.
75
75
&
3
k
4.
75
50
k
5.
50
–
x
=
R~
75.71428571
σ
x
=
Rp
12.37179148
n
=
Rn
7.
Σ
x
=
Rz
530.
Σ
x
2
=
Rw
41’200.
s
x
=
R£
13.3630621
s
x
2
=
L=
178.5714286
(95–
–
x
)
×
10+50=
(
95
-K~)
s
x
/K£*
10
+
50
=
64.43210706
x
= 60
→
P(t) ?
°1
60
°0)=
0.102012
t = –0.5
→
R(t) ?
°3
0.5
±)=
0.691463
x
y
m11
0.
2
5
2
&
5
k
1.
2
5
k
2.
12
24
12
&
24
k
3.
21
40
21
&
40
&
3
k
4.
21
40
15
&
25
k
5.
21
40
Ra
1.050261097
15
25
Rb
1.826044386
Rr
0.995176343
R£
8.541216597
R¢
15.67223812
x
=3
→
y
′
=?
3
@y
6.528394256
y
=46
→
x
′
=?
46
@x
24.61590706
x
y
m12
0.
12 41
12
&
41
k
1.
8 13
8
&
13
k
2.
5 2
5
&
2
k
3.
23 200
23
&
200
k
4.
15 71
15
&
71
k
5.
Ra
5.357506761
Rb
–3.120289663
R©
0.503334057
x
=10
→
y
′
=?
10
@y
24.4880159
y
=22
→
x
′
=?
22
@x
9.63201409
@≠
–3.432772026
@≠
9.63201409
k[]
DATA
30
m10
0.
40
30
k
1.
40
40
&
2
k
2.
50
50
k
3.
↓
DATA
30
]]]
45
45
&
3
k
X2
=
45.
45
]
N2
=
3.
45
60
]
60
k
X3
=
60.
stdDv L1 = 2.516611478
ª∑46∑00=
vari L1 = 6.333333333
ª∑47∑00=
o_prod(L1,L2) = {–24 –4 19}
ª∑48∑00
@,∑01)=
i_prod(L1,L2) = –29
ª∑49∑00
@,∑01)=
abs L2 = 5.099019514
ª∑4A∑01=
list
→
matA matA:
2 –3
list
→
matA matA: 7 –1
ª∑6
list
→
matA matA:
4 –4
Function
Dynamic range
Funktion
zulässiger Bereich
Fonction
Plage dynamique
Función
Rango dinámico
Função
Gama dinâmica
Funzioni
Campi dinamici
Functie
Rekencapaciteit
Függvény
Megengedett számítási tartomány
Funkce
Dynamický rozsah
Funktion
Definitionsområde
Funktio
Dynaaminen ala
îÛÌ͈Ëfl
ÑË̇Ï˘ÂÒÍËÈ ‰Ë‡Ô‡ÁÓÌ
Funktion
Dynamikområde
Fungsi
Julat dinamik
Fungsi
Kisaran dinamis
Haøm soá
Giôùi haïn Ñoäng
DEG:
|
x
| < 10
10
(tan
x
: |
x
|
≠
90 (2n–1))*
sin
x
, cos
x
,
RAD:
|
x
| < —–
×
10
10
tan
x
(tan
x
: |
x
|
≠
— (2n–1))*
GRAD: |
x
| < —–
×
10
10
(tan
x
: |
x
|
≠
100 (2n–1))*
sin
–1
x
,
cos
–1
x
|
x
|
≤
1
tan
–1
x
,
3
¿
x
|
x
| < 10
100
In
x
,
log
x
10
–99
≤
x
< 10
100
•
y
> 0: –10
100
<
x
log
y
< 100
•
y
= 0: 0 <
x
< 10
100
yx
•
y
< 0:
x
= n
(0 < l
x
l < 1: — = 2n–1,
x
≠
0)*,
–10
100
<
x
log |
y
| < 100
•
y
> 0: –10
100
< — log
y
< 100 (
x
≠
0)
•
y
= 0: 0 <
x
< 10
100
x
¿
y
•
y
< 0:
x
= 2n–1
(0 < |
x
| < 1 : — = n,
x
≠
0)*,
–10
100
< — log |
y
| < 100
e
x
–10
100
<
x
≤
230.2585092
10
x
–10
100
<
x
< 100
sinh
x
,
cosh
x
,
|
x
|
≤
230.2585092
tanh
x
sinh
–1
x
|
x
| < 10
50
cosh
–1
x
1
≤
x
< 10
50
tanh
–1
x
|
x
| < 1
x
2
|
x
| < 10
50
x
3
|
x
| < 2.15443469
×
10
33
¿
x
0
≤
x
< 10
100
x
–1
|
x
| < 10
100
(
x
≠
0)
n!
0
≤
n
≤
69*
nPr
0
≤
r
≤
n
≤
9999999999*
—— < 10
100
nCr
0
≤
r
≤
n
≤
9999999999*
0
≤
r
≤
69
—— < 10
100
↔
DEG, D°M’S
0°0’0.00001”
≤
|
x
| < 10000°
x
,
y
→
r
,
θ
x
2
+
y
2
< 10
100
0
≤
r
< 10
100
DEG:
|
θ
| < 10
10
r
,
θ
→
x
,
y
RAD:
|
θ
| < —–
×
10
10
GRAD : |
θ
| < —
×
10
10
DEG
→
RAD, GRAD
→
DEG: |
x
| < 10
100
DRG
|
RAD
→
GRAD: |
x
| < —
×
10
98
(A+B
i
)+(C+D
i
)
| A + C | < 10
100
, | B + D | < 10
100
(A+B
i
)–(C+D
i
)
| A – C | < 10
100
, | B – D | < 10
100
(A+B
i
)
×
(C+D
i
)
(AC – BD) < 10
100
(AD + BC) < 10
100
@{
8
Ö
70
+
12
Ö
25
=
[
r
]
18.5408873
i
@≠
[
θ
]
∠
42.76427608
i
r
1 = 8,
θ
1 = 70°
r
2 = 12,
θ
2 = 25°
↓
r
= ?,
θ
= ?°
(1 +
i
)
@}
1
+Ü=
1.
i
↓
@{
[
r
]
1.414213562
i
r
= ?,
θ
= ?°
@≠
[
θ
]
∠
45.
i
@}(
2
-
3
Ü)L
(2 – 3
i
)
2
=
=
[
x
]
–5.
i
@≠
[
y
]
–
12.
i
1
(
1
+Ü)@•=
[
x
]
0.5
i
1 +
i
@≠
[
y
]
–
0.5
i
CONJ(5+2
i
) =
∑0(
5
+
2
Ü)=
[
x
]
5.
i
@≠
[
y
]
–
2.
i
m
(MAT)
m4
1 2
→
matA
]
2
k
2
k
1
k
2
k
3 4
3
k
4
k
3 1
→
matB
ª∑20
2 6
]
2
k
2
k
3
k
1
k
2
k
6
k
ª∑21
matA
×
matB =
7 13
ª∑00*∑01=
17 27
matA
–1
=
–2 1
ª∑00@•=
1.5 –0.5
dim(matA,3,3) =
1 2 0
ª∑30∑00
dim(matA,3,3) = 3 4 0
@,
3
@,
3
)=
dim(matA,3,3) =
0 0 0
fill(5,3,3) =
5 5 5
ª∑31
5
@,
fill(5,3,3) = 5 5 5
3
@,
3
)=
fill(5,3,3) =
5 5 5
cumul matA =
1 2
ª∑32∑00=
4 6
aug(matA,matB) =
1 2 3 1
ª∑33∑00
3 4 2 6
@,∑01)=
identity 3 =
1 0 0
identity 3 = 0 1 0
ª∑34
3
=
identity 3 =
0 0 1
rnd_mat(2,3)
ª∑35
2
@,
3
)=
det matA = –2
ª∑40∑00=
trans matB =
3 2
ª∑41∑01=
1 6
mat
→
list
L1: {1 3}
ª∑5
L2: {3 2}
m
(LIST)
m5
2, 7, 4
→
L1
]
3
k
2
k
7
k
4
k
–3, –1, –4
→
L2
ª∑20
]
3
k
±
3
k±
1
k±
4
k
ª∑21
L1+L2 = {–1 6 0}
ª∑00+∑01=
sortA L1 = {2 4 7}
ª∑30∑00=
sortD L1 = {7 4 2}
ª∑31∑00=
dim(L1,5) = {2 7 4 0 0}
ª∑32∑00
@,
5
)=
fill(5,5) = {5 5 5 5 5}
ª∑33
5
@,
5
)=
cumul L1 = {2 9 13}
ª∑34∑00=
df_list L1 = {5 –3}
ª∑35∑00=
aug(L1,L2) = {2 7 4 –3 –1 –4}
ª∑36∑00
@,∑01)=
min L1 = 2
ª∑40∑00=
max L1 = 7
ª∑41∑00=
mean L1 = 4.333333333
ª∑42∑00=
med L1 = 4
ª∑43∑00=
sum L1 = 13
ª∑44∑00=
prod L1 = 56
ª∑45∑00=
1011 AND
ª@ê
1011
†
101 = (BIN)
101
=
1
.
b
5A OR C3 = (HEX)
@ì
5A
ä
C3
=
db
.
H
NOT 10110 =
@êâ
10110
=
1111101001
.
b
(BIN)
24 XOR 4 = (OCT)
@î
24
à
4
=
20
.
0
B3 XNOR
@ì
B3
á
2D = (HEX)
2D
=
FFFFFFFF61
.
H
→
DEC
@í
–159.
o_°
(
→
sec,
→
min)
12°39’18.05”
ª
12
o
39
o
18.05
→
[10]
@_
12.65501389
123.678
→
[60]
123.678
@_
123°40’40.8”
3h
3
o
30
o
45
+
6
o
6h45m36s = [60]
45
o
36
=
10°16’21.”
1234°56’12” +
1234
o
56
o
12
+
0°0’34.567” = [60]
0
o
0
o
34.567
=
1234°56’47.”
3h45m –
3
o
45
-
1.69
=
1.69h = [60]
@_
2°3’36.”
sin62°12’24” = [10]
s
62
o
12
o
24
=
0.884635235
24°
→
[ ” ]
24
o°2
86’400.
1500”
→
[ ’ ]
0
o
0
o
1500
°3
25.
{},≠
ª
6
@,
4
x
= 6
→
r
=
@{
[
r
]
7.211102551
y
= 4
θ
= [°]
@≠
[
θ
]
33.69006753
@≠
[
r
]
7.211102551
14
@,
36
r
= 14
→
x
=
@}
[
x
]
11.32623792
θ
= 36[°]
y
=
@≠
[
y
]
8.228993532
@≠
[
x
]
11.32623792
ß
V
0
= 15.3m/s
ª
15.3
*
10
+
2
@•*
t = 10s
ß
03
*
10
L=
643.3325
V
0
t+ — gt
2
= ?m
¥
125yd = ?m
ª
125
@¥
5
=
114.3
∑
(k, M, G, T, m,
Ì
Ì
Ì
Ì
Ì
, n, p, f)
100m
×
10k=
100
∑14*
10
∑10=
1’000.
j”
5÷9=ANS
ª”10”2
1
ANS
×
9=
5
/
9
=
0.6
[FIX,TAB=1]
*
9
=
*
1
5.0
5
/
9
=@j
0.6
*
9
=
*
2
5.4
”13
*
1
5.5555555555555
×
10
–1
×
9
*
2
0.6
×
9
∑
(SOLV)
sin
x
–0.5
ªsKˆ-
0.5
Start= 0
∑0
0
®®
30.
Start= 180
®
180
®®
150.
≤
m0
f
(
x
) =
x
3
–3
x
2
+2
Kˆ™
3
-
3
K
ˆL+
2
@≤
x
= –1
1
±®
–2.
x
= –0.5
@≤
0.5
±®
1.125
A
2
+B
2
@⁄(KAL+
KBL)@≤
A = 2, B = 3
2
®
3
®
3.605551275
A = 2, B = 5
@≤®
5
®
5.385164807
1 2 3 4 5 6 7 8 9 0 . ,
1 2 3 4 5 6 7 8 9 0 . ,
1 2 3 4 5 6 7 8 9 0 . ,
1 2 3 4 5 6 7 8 9 0 . ,
1 2 3 4 5 6 7 8 9 0 . ,
1 2 3 4 5 6 7 8 9 0 . ,
CALCULATION EXAMPLES
ANWENDUNGSBEISPIELE
EXEMPLES DE CALCUL
EJEMPLOS DE CÁLCULO
EXEMPLOS DE CÁLCULO
ESEMPI DI CALCOLO
REKENVOORBEELDEN
PÉLDASZÁMÍTÁSOK
PŘÍKLADY VÝPOČTŮ
RÄKNEEXEMPEL
LASKENTAESIMERKKEJÄ
èêàåÖêõ ÇõóàëãÖçàâ
UDREGNINGSEKSEMPLER
CONTOH-CONTOH PENGHITUNGAN
CONTOH-CONTOH PERHITUNGAN
CAÙC VÍ DUÏ PHEÙP TÍNH
EL-506W
EL-546W
[]
1
3(5+2)=
ª
3
(
5
+
2
)=
21.
2
3
×
5+2=
3
*
5
+
2
=
17.
3
3
×
5+3
×
2=
3
*
5
+
3
*
2
=
21.
→
1
@[
21.
→
2
]
17.
→
3
]
21.
→
2
[
17.
”
100000÷3=
[NORM1]
ª
100000
/
3
=
33’333.33333
→
[FIX]
”10
33’333.33333
[TAB 2]
”2
2
33’333.33
→
[SCI]
”11
3.33
×
10
04
–
→
[ENG]
”12
33.33
×
10
03
–
→
[NORM1]
”13
33’333.33333
3÷1000=
[NORM1]
ª
3
/
1000
=
0.003
→
[NORM2]
”14
3.
×
10
–03
→
[NORM1]
”13
0.003
+-*/()±E
45+285
÷
3=
ª
45
+
285
/
3
=
140.
18+6
=
(
18
+
6
)/
15–8
(
15
-
8
=
3.428571429
42
×
(–5)+120=
42
*±
5
+
120
=
–90.
*
1
(5
±
) *
1
(5
×
10
3
)
÷
(4
×
10
–3
)= 5
E
3
/
4
E
±
3
=
1’250’000.
34+57=
34
+
57
=
91.
45+57=
45
+
57
=
102.
68
×
25=
68
*
25
=
1’700.
68
×
40=
68
*
40
=
2’720.
sutSUTVhH
Ile¡•L÷⁄™
$#!qQ%
sin60[°]=
ªs
60
=
0.866025403
cos — [rad]=
”01u(
@V/
4
)=
0.707106781
tan
–1
1=[g]
”02@T
1
=
50.
”00
(cosh 1.5 +
ª(hu
1.5
+h
sinh 1.5)
2
=
s
1.5
)L=
20.08553692
tanh
–1
— =
@Ht(
5
/
7
)=
0.895879734
ln 20 =
I
20
=
2.995732274
log 50 =
l
50
=
1.698970004
e
3
=
@e
3
=
20.08553692
10
1.7
=
@¡
1.7
=
50.11872336
— + — =
6
@•+
7
@
•=
0.309523809
8
–2
– 3
4
×
5
2
=
8
™±
2
-
3
™
4
*
5
L=
–2’024.984375
(12
3
)
—
=
12
™
3
™
4
@•=
6.447419591
8
3
=
8
÷=
512.
¿
49 –
4
¿
81 =
@⁄
49
-
4
@$
81
=
4.
3
¿
27 =
@#
27
=
3.
4! =
4
@!=
24.
10
P
3
=
10
@q
3
=
720.
5
C
2
=
5
@Q
2
=
10.
500
×
25%=
500
*
25
@%
125.
120÷400=?%
120
/
400
@%
30.
500+(500
×
25%)= 500
+
25
@%
625.
400–(400
×
30%)= 400
-
30
@%
280.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
θ
= sin
–1
x
,
θ
= tan
–1
x
θ
= cos
–1
x
DEG
–90
≤
θ
≤
90
0
≤
θ
≤
180
RAD
– —
≤
θ
≤
—
0
≤
θ
≤
π
GRAD
–100
≤
θ
≤
100
0
≤
θ
≤
200
Åè
d/d
x
(
x
4
– 0.5
x
3
+ 6
x
2
)
ªKˆ™
4
-
0.5
K
x
=2
ˆ÷+
6
KˆL
d
x
=0.00002
@Å
2
®®
50.
x
=3
®
3
®
0.001
®
130.5000029
d
x
=0.001
∫
8
2
(
x
2
– 5)d
x
ªKˆL-
5
n=100
è
2
®
8
®®
138.
n=10
®®®
10
®
138.
g
90°
→
[rad]
ª
90
@g
1.570796327
→
[g]
@g
100.
→
[°]
@g
90.
sin
–1
0.8 = [°]
@S
0.8
=
53.13010235
→
[rad]
@g
0.927295218
→
[g]
@g
59.03344706
→
[°]
@g
53.13010235
π
2
π
2
KRO;:?≥∆˚¬
ª
8
*
2
OM
16.
24÷(8
×
2)=
24
/KM=
1.5
(8
×
2)
×
5=
KM*
5
=
80.
ªOM
0.
$150
×
3:M
1
150
*
3
;
450.
+)$250:M
2
=M
1
+250
250
;
250.
–)M
2
×
5%
RM*
5
@%
35.
M
@:RM
665.
$1=¥110
110
OY
110.
¥26,510=$?
26510
/RY=
241.
$2,750=¥?
2750
*RY=
302’500.
r=3cm (r
→
Y)
3
OY
3.
π
r
2
=?
@VKYL=
28.27433388
—— = 2.4...(A)
24
/(
4
+
6
)=
2.4
3
×
(A)+60÷(A)=
3
*K?+
60
/
K?=
32.2
π
r
2
⇒
F1
@VKYL
O≥
F1
3
OY
3.
V = ?
R≥*
4
/
3
=
37.69911184
6+4=ANS
ª
6
+
4
=
10.
ANS+5
+
5
=
15.
8
×
2=ANS
8
*
2
=
16.
ANS
2
L=
256.
44+37=ANS
44
+
37
=
81.
√
ANS=
@⁄=
9.
\|
3— + — = [a—]
ª
3
\
1
\
2
+
4
\
3
=
4
l
5
l
6
*
→
[a.xxx]
\
4.833333333
→
[d/c]
@|
29
l
6
10
—
=
@¡
2
\
3
=
4.641588834
(
—
)
5
=
7
\
5
™
5
=
16807
l
3125
(
—
)
—
=
1
\
8
™
1
\
3
=
1
l
2
—— =
@⁄
64
\
225
=
8
l
15
2
3
(
2
™
3
)
\
3
4
(
3
™
4
)
=
8
l
81
1.2
1.2
\
2.3
=
12
l
23
2.3
1°2’3”
1
o
2
o
3
\
2
=
0°31’1.5”
2
1
×
10
3
1
E
3
\
2
E
3
=
1
l
2
2
×
10
3
A = 7
ª
7
OA
7.
— =
4
\KA=
4
l
7
1.25 + — = [a.xxx]
1.25
+
2
\
5
=
1.65
→
[a—]
\
1
l
13
l
20
*
4
l
5
l
6
= 4—
êûîìíãâ†ä
àá
DEC(25)
→
BIN
ª@í
25
@ê
11001
.
b
HEX(1AC)
@ì
1AC
→
BIN
@ê
110101100
.
b
→
PEN
@û
3203
.
P
→
OCT
@î
654
.
0
→
DEC
@í
428.
BIN(1010–100)
@ê(
1010
-
100
)
×
11 =
*
11
=
10010
.
b
BIN(111)
→
NEG
ã
111
=
1111111001
.
b
HEX(1FF)+
@ì
1FF
@î+
OCT(512)=
512
=
1511
.
0
HEX(?)
@ì
349
.
H
2FEC–
ªOM@ì
2FEC
-
2C9E=(A)
2C9E
;
34E
.
H
+)2000–
2000
-
1901=(B)
1901
;
6FF
.
H
(C)
RM
A4d
.
H
t = ––––
x – x
σ
x
Standardization conversion formula
Standard Umrechnungsformel
Formule de conversion de standardisation
Fórmula de conversión de estandarización
Fórmula de conversão padronizada
Formula di conversione della standardizzazione
Standaardisering omzettingsformule
Standard átváltási képlet
Vzorec pro přepočet rozdělení
Omvandlingsformel för standardisering
Normituksen konversiokaava
îÓÏÛ· Òڇ̉‡ÚËÁÓ‚‡ÌÌÓ„Ó ÔÂÓ·‡ÁÓ‚‡ÌËfl
Omregningsformel for standardisering
Rumus penukaran pemiawaian
Rumus konversi standarisasi
Coâng thöùc bieán ñoåi chuaån hoùa
m
(2-VLE)
m20
2
x
+ 3
y
= 4
2
®
3
®
4
®
5
x
+ 6
y
= 7
5
®
6
®
7
x
= ?
®
[
x
]
–1.
y
= ?
®
[
y
]
2.
det(D) = ?
®
[det(D)]
–3.
m
(3-VLE)
m21
x
+
y
–
z
= 9
1
®
1
®
1
±®
9
®
6
x
+ 6
y
–
z
= 17
6
®
6
®
1
±®
17
®
14
x
– 7
y
+ 2
z
= 42
14
®
7
±®
2
®
42
x
= ?
®
[
x
]
3.238095238
y
= ?
®
[
y
]
–1.638095238
z
= ?
®
[
z
]
–7.4
det(D) = ?
®
[det(D)]
105.
m
(QUAD, CUBIC)
m22
3
x
2
+ 4
x
– 95 = 0
3
®
4
®±
95
x
1 = ?
®
5.
x
2 = ?
®
–6.333333333
@®
5.
m23
5
x
3
+ 4
x
2
+ 3
x
+ 7 = 0
5
®
4
®
3
®
7
x
1 = ?
®
–1.233600307
i
x
2 = ?
®
0.216800153
i
@≠
+
1.043018296
i
x
3 = ?
®
0.216800153
i
@≠
–
1.043018296
i
m
(CPLX)
m3
(12–6
i
) + (7+15
i
) –
12
-
6
Ü+
7
+
15
Ü-
(11+4
i
) =
(
11
+
4
Ü)=
[
x
]
8.
i
@≠
[
y
]
+
5.
i
@≠
[
x
]
8.
i
6
×
(7–9
i
)
×
6
*(
7
-
9
Ü)*
(–5+8
i
) =
(
5
±+
8
Ü)=
[
x
]
222.
i
@≠
[
y
]
+
606.
i
16
×
(sin30°+
16
*(s
30
+
i
cos30°)÷(sin60°+
Üu
30
)/(s
60
+
i
cos60°)=
Üu
60
)=
[
x
]
13.85640646
i
@≠
[
y
]
+
8.
i
1
2
—— =
y
x
A
B
r
r
2
θ
1
θ
2
r
1
θ
• • • •
• • • •
• • • •
a
1
x
+
b
1
y
=
c
1
a
2
x
+
b
2
y
=
c
2
a
1
b
1
a
2
b
2
D =
a
1
x
+
b
1
y
+
c
1
z
=
d
1
a
2
x
+
b
2
y
+
c
2
z
=
d
2
a
3
x
+
b
3
y
+
c
3
z
=
d
3
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
D =
1
6
1
7
1
4
π
4
24
4+6
4
3
• • • •
• • • •
x =
Σ
x
n
y
=
Σ
y
n
sy
=
Σ
y
2
– ny
2
n –
1
sx
=
Σ
x
2
– nx
2
n –
1
Σ
x
=
x
1
+
x
2
+ ··· +
x
n
Σ
x
2
=
x
1
2
+
x
2
2
+ ··· +
x
n
2
Σ
xy
=
x
1
y
1
+
x
2
y
2
+ ··· +
x
n
y
n
Σ
y
=
y
1
+
y
2
+ ··· +
y
n
Σ
y
2
=
y
1
2
+
y
2
2
+ ··· +
y
n
2
σ
y
=
Σ
y
2
– ny
2
n
σ
x
=
Σ
x
2
– nx
2
n
• • • •
• • • •
This equipment complies with the requirements of Directive 89/336/
EEC as amended by 93/68/EEC.
Dieses Gerät entspricht den Anforderungen der EG-Richtlinie 89/336/
EWG mit Änderung 93/68/EWG.
Ce matériel répond aux exigences contenues dans la directive 89/336/
CEE modifiée par la directive 93/68/CEE.
Dit apparaat voldoet aan de eisen van de richtlijn 89/336/EEG,
gewijzigd door 93/68/EEG.
Dette udstyr overholder kravene i direktiv nr. 89/336/EEC med tillæg
nr. 93/68/EEC.
Quest’ apparecchio è conforme ai requisiti della direttiva 89/336/EEC
come emendata dalla direttiva 93/68/EEC.
89/336/,
93/68/.
Este equipamento obedece às exigências da directiva 89/336/CEE na
sua versão corrigida pela directiva 93/68/CEE.
Este aparato satisface las exigencias de la Directiva 89/336/CEE
modificada por medio de la 93/68/CEE.
Denna utrustning uppfyller kraven enligt riktlinjen 89/336/EEC så som
kompletteras av 93/68/EEC.
Dette produktet oppfyller betingelsene i direktivet 89/336/EEC i
endringen 93/68/EEC.
Tämä laite täyttää direktiivin 89/336/EEC vaatimukset, jota on
muutettu direktiivillä 93/68/EEC.
чÌÌÓ ÛÒÚÓÈÒÚ‚Ó ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ú·ӂ‡ÌËflÏ ‰ËÂÍÚË‚˚ 89/336/
EEC Ò Û˜ÂÚÓÏ ÔÓÔ‡‚ÓÍ 93/68/EEC.
Ez a készülék megfelel a 89/336/EGK sz. EK-irányelvben és annak 93/
68/EGK sz. módosításában foglalt követelményeknek.
Tento pfiístroj vyhovuje poÏadavkÛm smûrnice 89/336/EEC v platném
znûní 93/68/EEC.
In Europe:
Nur für Deutschland/For Germany only:
Umweltschutz
Das Gerät wird durch eine Batterie mit Strom versorgt.
Um die Batterie sicher und umweltschonend zu entsorgen,
beachten Sie bitte folgende Punkte:
• Bringen Sie die leere Batterie zu Ihrer örtlichen Mülldeponie,
zum Händler oder zum Kundenservice-Zentrum zur
Wiederverwertung.
• Werfen Sie die leere Batterie niemals ins Feuer, ins Wasser
oder in den Hausmüll.
Seulement pour la France/For France only:
Protection de l’environnement
L’appareil est alimenté par pile. Afin de protéger
l’environnement, nous vous recommandons:
• d’apporter la pile usagée ou à votre revendeur ou au service
après-vente, pour recyclage.
• de ne pas jeter la pile usagée dans une source de chaleur,
dans l’eau ou dans un vide-ordures.
AC + BD
< 10
100
C
2
+ D
2
(A+B
i
)÷(C+D
i
)
BC – AD
< 10
100
C
2
+ D
2
C
2
+ D
2
≠
0
→
DEC
DEC
: |
x
|
≤
9999999999
→
BIN
BIN
: 1000000000
≤
x
≤
1111111111
→
PEN
0
≤
x
≤
111111111
→
OCT
PEN
: 2222222223
≤
x
≤
4444444444
→
HEX
0
≤
x
≤
2222222222
AND
OCT
: 4000000000
≤
x
≤
7777777777
OR
0
≤
x
≤
3777777777
XOR
HEX
: FDABF41C01
≤
x
≤
FFFFFFFFFF
XNOR
0
≤
x
≤
2540BE3FF
BIN
: 1000000000
≤
x
≤
1111111111
0
≤
x
≤
111111111
PEN
: 2222222223
≤
x
≤
4444444444
NOT
0
≤
x
≤
2222222221
OCT
: 4000000000
≤
x
≤
7777777777
0
≤
x
≤
3777777777
HEX
: FDABF41C01
≤
x
≤
FFFFFFFFFF
0
≤
x
≤
2540BE3FE
BIN
: 1000000001
≤
x
≤
1111111111
0
≤
x
≤
111111111
PEN
: 2222222223
≤
x
≤
4444444444
NEG
0
≤
x
≤
2222222222
OCT
: 4000000001
≤
x
≤
7777777777
0
≤
x
≤
3777777777
HEX
: FDABF41C01
≤
x
≤
FFFFFFFFFF
0
≤
x
≤
2540BE3FF
* n, r: integer / ganze Zahlen / entier / entero / inteiro / intero /
geheel getal / egész számok /
celé číslo
/ heltal /
kokonaisluku /
ˆÂÎ˚Â
/ heltal /
/
/
/
integer / bilangan bulat /
soá nguyeân
• • • •
• • • •
• • • •
n!
(n-r)!
n!
(n-r)!
π
180
10
9
π
2
π
180
π
2
10
9
1
x
1
x
1
x
1
x
Endast svensk version/For Sweden only:
Miljöskydd
Denna produkt drivs av batteri.
Vid batteribyte skall följande iakttagas:
• Det förbrukade batteriet skall inlämnas till er lokala handlare
eller till kommunal miljöstation för återinssamling.
• Kasta ej batteriet i vattnet eller i hushållssoporna. Batteriet
får ej heller utsättas för öppen eld.
OPMERKING: ALLEEN VOOR NEDERLAND/
NOTE: FOR NETHERLANDS ONLY
• Physical Constants and Metric Conversions are shown in the
tables.
• Physikalischen Konstanten und metriche Umrechnungen sind
in der Tabelle aufgelistet.
• Les constants physiques et les conversion des unités sont
indiquées sur les tableaux.
• Las constants fisicas y conversiones métricas son mostradas
en las tables.
• Constantes Fisicas e Conversões Métricas estão mostradas
nas tablelas.
• La constanti fisiche e le conversioni delle unità di misura
vengono mostrate nella tabella.
• De natuurconstanten en metrische omrekeningen staan in de
tabellen hiernaast.
•
A fizikai konstansok és a metrikus átváltások a táblázatokban
találhatók.
•
Fyzikální konstanty a převody do metrické soustavy jsou
uvedeny v tabulce.
• Fysikaliska konstanter och metriska omvandlingar visas i
tabellerna.
• Fysikaaliset vakiot ja metrimuunnokset näkyvät taulukoista.
•
Ç Ú‡·Îˈ‡ı ÔÓ͇Á‡Ì˚ ÙËÁ˘ÂÒÍË ÍÓÌÒÚ‡ÌÚ˚ Ë
ÏÂÚ˘ÂÒÍË ÔÂÓ·‡ÁÓ‚‡ÌËfl.
• Fysiske konstanter og metriske omskrivninger vises i tabellen.
•
•
•
• Pemalar Fizik dan Pertukaran Metrik ditunjukkan di dalam
jadual.
• Konstanta Fisika dan Konversi Metrik diperlihatkan di dalam
tabel.
•
Caùc Haèng soá Vaät lyù vaø caùc Pheùp bieán ñoåi Heä meùt ñöôïc theå
hieän trong caùc baûng.
METRIC CONVERSIONS
x
@¥
1 — 44
No.
UNIT
No.
UNIT
No.
UNIT
1
in
→
cm
16
kg
→
lb
31
J
→
cal
IT
2
cm
→
in
17
°F
→
°C
32
cal
IT
→
J
3
ft
→
m
18
°C
→
°F
33
hp
→
W
4
m
→
ft
19
gal (US)
→
l
34
W
→
hp
5
yd
→
m
20
l
→
gal (US)
35
ps
→
W
6
m
→
yd
21
gal (UK)
→
l
36
W
→
ps
7
mile
→
km
22
l
→
gal (UK)
37
kgf/cm
2
→
Pa
8
km
→
mile
23
fl oz (US)
→
m
l
38
Pa
→
kgf/cm
2
9
n mile
→
m
24
m
l
→
fl oz (US)
39
atm
→
Pa
10
m
→
n mile
25
fl oz (UK)
→
m
l
40
Pa
→
atm
11
acre
→
m
2
26
m
l
→
fl oz (UK)
41
mmHg
→
Pa
12
m
2
→
acre
27
J
→
cal
42
Pa
→
mmHg
13
oz
→
g
28
cal
→
J
43
kgf·m
→
J
14
g
→
oz
29
J
→
cal
15
44
J
→
kgf·m
15
lb
→
kg
30
cal
15
→
J
PHYSICAL CONSTANTS
ß
01 — 52
No. SYMBOL UNIT
No. SYMBOL UNIT
No. SYMBOL UNIT
01 -
c, c
0
m s
–1
19 -
µ
Β
J T
–1
37 -
eV
J
02 -
G
m
3
kg
–1
s
–2
20 -
µ
e
J T
–1
38 -
t
K
03 -
g
n
m s
–2
21 -
µ
Ν
J T
–1
39 -
AU
m
04 -
m
e
kg
22 -
µ
p
J T
–1
40 -
pc
m
05 -
m
p
kg
23 -
µ
n
J T
–1
41 -
M(
12
C)
kg mol
–1
06 -
m
n
kg
24 -
µ
µ
J T
–1
42 -
h
-
J s
07 -
m
µ
kg
25 -
λ
c
m
43 -
E
h
J
08 -
lu
kg
26 -
λ
c, p
m
44 -
G
0
s
09 -
e
C
27 -
σ
W m
–2
K
–4
45 -
α
–1
10 -
h
J s
28 -
N
Α
,
L
mol
–1
46 -
m
p
/m
e
11 -
k
J K
–1
29 -
V
m
m
3
mol
–1
47 -
M
u
kg mol
–1
12 -
µ
0
N A
–2
30 -
R
J mol
–1
K
–1
48 -
λ
c, n
m
13 -
ε
0
F m
–1
31 -
F
C mol
–1
49 -
c
1
W m
2
14 -
r
e
m
32 -
R
K
Ohm
50 -
c
2
m K
15 -
α
33 -
-e/m
e
C kg
–1
51 -
Z
0
Ω
16 -
a
0
m
34 -
h/2m
e
m
2
s
–1
52 -
Pa
17 -
R
∞
m
–1
35 -
γ
p
s
–1
T
–1
18 -
Φ
0
Wb
36 -
K
J
Hz V
–1
ENGLISH
5
7
1
2
4
3
b
c
2
3
64
225
— =
—– =
——– =
——– =
4
A
2
5
b
c
5
6
1
3
7
5
1
8