174
2
2
2
3
3
3
2
2
2
2
2
3
3
3
2
2
1
2
2
3
3
1
2
2
3
3
1
1
1
1
2
2
69
65
75
6D
7D
79
61
71
E9
E5
F5
ED
FD
F9
E1
F1
3A
E6
F6
EE
FE
1A
C6
D6
CE
DE
E8
CA
C8
88
62
E2
0 1 1 0 1 0 0 1
<B2>
0 1 1 0 0 1 0 1
<B2>
0 1 1 1 0 1 0 1
<B2>
0 1 1 0 1 1 0 1
<B2>
<B3>
0 1 1 1 1 1 0 1
<B2>
<B3>
0 1 1 1 1 0 0 1
<B2>
<B3>
0 1 1 0 0 0 0 1
<B2>
0 1 1 1 0 0 0 1
<B2>
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INSTRUCTION CODE
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
FLAG
N V T B D I Z C
Parameter
NOTE
BYTE
NUMBER
CYCLE
NUMBER
Add and Sabstruct
Operation
HEX
ADC # $ nn
ADC $ zz
ADC $ zz, X
ADC $ hhII
ADC $ hhII, X
ADC $ hhII, Y
ADC
($ zz, X)
ADC
($ zz), Y
SBC # $ nn
SBC $ zz
SBC $ zz, X
SBC $ hhII
SBC $ hhII, X
SBC $ hhII, Y
SBC
($ zz, X)
SBC
($ zz), Y
INC
A
INC
$ zz
INC
$ zz, X
INC
$ hhII
INC
$ hhII, X
DEC
A
DEC $ zz
DEC $ zz, X
DEC $ hhII
DEC $ hhII, X
INX
DEX
INY
DEY
MUL $ zz, X
DIV
$ zz, X
2
3
4
4
5
5
6
6
2
3
4
4
5
5
6
6
2
5
6
6
7
2
5
6
6
7
2
2
2
2
15
16
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
✕ ✕ ✕ ✕
1 1 1 0 1 0 0 1
<B2>
1 1 1 0 0 1 0 1
<B2>
1 1 1 1 0 1 0 1
<B2>
1 1 1 0 1 1 0 1
<B2>
<B3>
1 1 1 0 1 1 0 1
<B2>
<B3>
1 1 1 1 1 0 0 1
<B2>
<B3>
1 1 1 0 0 0 0 1
<B2>
1 1 1 1 0 0 0 1
<B2>
0 0 1 1 1 0 1 0
1 1 1 0 0 1 1 0
<B2>
1 1 1 1 0 1 1 0
<B2>
1 1 1 0 1 1 1 0
<B2>
<B3>
1 1 1 1 1 1 1 0
<B2>
<B3>
Classification
SYMBOL
FUNCTION
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
(A)
←
(A)+nn+(C)
(A)
←
(A)+(M)+(C)
where
M=(zz)
(A)
←
(A)+(M)+(C)
where
M=(zz+(X))
(A)
←
(A)+(M)+(C)
where
M=(hhII)
(A)
←
(A)+(M)+(C)
where
M=(hhII+(X))
(A)
←
(A)+(M)+(C)
where
M=(hhII+(Y))
(A)
←
(A)+(M)+(C)
where
M=((zz+(X)+1)(zz+(X)))
(A)
←
(A)+(M)+(C)
where
M=((zz+1)(zz)+(Y))
(A)
←
(A)–nn–(C)
(A)
←
(A)–(M)–(C)
where
M=(zz)
(A)
←
(A)–(M)–(C)
where
M=(zz+(X))
(A)
←
(A)–(M)–(C)
where
M=(hhII)
(A)
←
(A)–(M)–(C)
where
M=(hhII+(X))
(A)
←
(A)–(M)–(C)
where
M=(hhII+(Y))
(A)
←
(A)–(M)–(C)
where
M=((zz+(X)+1)(zz+(X)))
(A)
←
(A)–(M)–(C)
where
M=((zz+1)(zz)+(Y))
(A)
←
(A)+1
(M)
←
(M)+1
where
M=(zz)
(M)
←
(M)+1
where
M=(zz+(X))
(M)
←
(M)+1
where
M=(hhll)
(M)
←
(M)+1
where
M=(hhII+(X))
(A)
←
(A)–1
(M)
←
(M)–1
where
M=(zz)
(M)
←
(M)–1
where
M=(zz+(X))
(M)
←
(M)–1
where
M=(hhII)
(M)
←
(M)–1
where
M=(hhII+(X))
(X)
←
(X)+1
(X)
←
(X)–1
(Y)
←
(Y)+1
(Y)
←
(Y)–1
M(S), (A)
←
(A)
✕
M(zz+(X))
(S)
←
(S)–1
(A)
←
(M(zz+(X)+1), M(zz+(X))÷(A)
M(S)
←
One’s complement of remainder
(S)
←
(S)–1
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
0 0 0 1 1 0 1 0
1 1 0 0 0 1 1 0
<B2>
1 1 0 1 0 1 1 0
<B2>
1 1 0 0 1 1 1 0
<B2>
<B3>
1 1 0 1 1 1 1 0
<B2>
<B3>
1 1 1 0 1 0 0 0
1 1 0 0 1 0 1 0
1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0
Multip
ly
/ Divid
e
740 Family Machine Language Instruction Table