Cautions
Specifications
Model No.
Indication
Lever Design
Dimensions
External
Dimensions
Accessories
Performance
Curve
Lever Installation/
Removal Procedure
model
LHA-A
Swing Clamp
Quick Change Lever Type A
Allowable Swing Time Graph
Allowable Releasing Time (sec)
Allowable Locking Time (sec)
Lever Inertia Moment (kg・
m
2
)
0.030
0
0.005
0.010
0.015
0.020
0.025
0
0.7 0.8
0.5 0.6
0.4
0.1 0.2 0.3
0
1.4 1.6
1.0 1.2
0.8
0.2 0.4 0.6
Allowable Releasing Time (sec)
Allowable Locking Time (sec)
Lever Inertia Moment (kg・
m
2
)
0.010
0
0.002
0.004
0.006
0.008
0
0.7 0.8
0.5 0.6
0.4
0.1 0.2 0.3
0
1.4 1.6
1.0 1.2
0.8
0.2 0.4 0.6
Allowable Releasing Time (sec)
Allowable Locking Time (sec)
Lever Inertia Moment (kg・
m
2
)
0.08
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0
0.7 0.8
0.5 0.6
0.4
0.1 0.2 0.3
0
1.4 1.6
1.0 1.2
0.8
0.2 0.4 0.6
Allowable Releasing Time (sec)
Allowable Locking Time (sec)
Lever Inertia Moment (kg・
m
2
)
0.020
0
0.004
0.008
0.012
0.016
0
0.7 0.8
0.5 0.6
0.4
0.1 0.2 0.3
0
1.4 1.6
1.0 1.2
0.8
0.2 0.4 0.6
90°Swing
Full Stroke
90°Swing
Full Stroke
90°Swing
Full Stroke
90°Swing
Full Stroke
※1
※1
※2
※2
※2
※2
※1
※1
Model
①
③
④
Allowable Releasing Time (sec)
Allowable Locking Time (sec)
Lever Inertia Moment (kg・
m
2
)
0.020
0
0.004
0.008
0.0068
0.012
0.016
0
0.7 0.8
0.5 0.6
0.4
0.1 0.2 0.3
0
1.4 1.6
1.0 1.2
0.8
0.2 0.4 0.6
②
LHA0480-A
(How to read the allowable swing time graph)
When using LHA0480-A
Lever Inertia Moment:0.0068kg・m
2
①90° Swing Time when Locking : About 0.44 sec or more
②90° Swing Time when Releasing : About 0.22 sec or more
③Total Lock Operation Time
: About 0.9 sec or more
④Total Release Operation Time : About 0.45 sec or more
1. The full action time on the graph represents the allowable
operation time when fully stroked.
Full Stroke
(Total Operation Time)
90° Swing
(Swing Stroke)
(Vertical Stroke)
90° Swing
Full Stroke (Reference)
Notes:
※1. It shows the inertia moment of lever blank (LZH□-A).
※2. For any lever inertia moment, minimum 90° swing time should be 0.2 sec for locking and 0.1 sec for releasing or more.
1. The graph shows the allowable action time with respect to the lever inertia moment when the piston rod operates at constant speed.
2. There may be no lever swing action with large inertia depending on supply hydraulic pressure, oil flow and lever mounting position.
3. For speed adjustment of clamp lever, please use meter-out flow control valve.
In case of meter-in control, the clamp lever may be accelerated by its own weight during swinging motion
(clamp mounted horizontally) or the piston rod may be moving too fast.
Please refer to page 17 for speed control of the hydraulic cylinder.
4. Excessive swing speed can reduce stopping accuracy and damage the internal parts.
5. Please contact us if operational conditions differ from those shown on the graphs.
LHA0480-A
LHA0550-A
LHA0650-A
LHA0750-A
Allowable Locking Time (sec)
LHA0400-A
Allowable Releasing Time (sec)
Lever Inertia Moment (kg・
m
2
)
0.12
0
0.02
0.04
0.06
0.08
0.10
0
0.7 0.8
0.5 0.6
0.4
0.1 0.2 0.3
0
1.4 1.6
1.0 1.2
0.8
0.2 0.4 0.6
90°Swing
Full Stroke
※1
※2
※ Allowable swing time graph is the same as that of standard model LHA.
LHA0360-A
Allowable Releasing Time (sec)
Allowable Locking Time (sec)
Lever Inertia Moment (kg・
m
2
)
0.005
0
0.001
0.002
0.003
0.004
0
0.7 0.8
0.5 0.6
0.4
0.1 0.2 0.3
0
1.4 1.6
1.0 1.2
0.8
0.2 0.4 0.6
90°Swing
Full Stroke
※1
※2
Adjustment of Swing Time
The graph shows allowable swing time against lever inertia moment.
Please make sure that an operation time is more than the operation
time shown in the graph.
Excessive action speed can reduce stopping accuracy
and damage internal parts.
① For a rectangular plate (cuboid),
the rotating shaft is vertically on
one side of the plate.
② For a rectangular plate (cuboid),
the rotating shaft is vertically on
the gravity center of the plate.
③ Load is applied on the lever front end.
L
b
L
b
L
b
K
m
m
2
L
1
L
2
m
1
m
3
How to calculate inertia moment (Estimated)
:Inertia Moment (kg・m
2
)
L,L
1
,L
2
,K,b:Length (m)
m,m
1
,m
2
,m
3
:Mass (kg)
m
2
m
1
L
1
=m
1
+m
2
4L
2
+b
2
12
4L
1
2
+b
2
12
=m
1
+m
2
4L
2
+b
2
12
4L
1
2
+b
2
12
+m
3
K
2
+m
3
L
2
2
+b
2
12
=m L
2
+b
2
12
8
7