background image

8

KFD 62528W/060801

the fins oriented along the width). Natural convection is the  air flow produced when  air in contact with a 
hot surface is heated. An open environment is required with no external forces moving the air. The Figures 
apply when the power module is the only source of heat present in the system.

18.5 USE OF GRAPHS

First determine the amount of power that is to be dissipated as heat, as well as the ambient operating tem-
perature. Plot the data on the graph, and note the intersection point; the point indicates the appropriate 
heat sink to use. For instance, if P

D

=20 W and Ta=30°C,  a 0.5 inch (12.7mm) heat sink with fins oriented 

along the width, would keep the module within its operating temperature rating

18.6 THERMAL MODELS 

The curves in Figure 14 are plots of thermal resistance against air velocity, for various types of heat sinks; 
with fins oriented along the width and with fins oriented along the length. The plots are determined experi-
mentally without a heat sink and with the heat sinks illustrated in Figures 9 and 10 . The highest values on 
the curves represent natural convection. In a system with free flowing air and other heat sources, there 
may be additional air flow.

The following two examples illustrate how the curves can be used to determine thermal performance under 
various air flow and heat sink configurations.

Example 1: To determine the air flow required to maintain T

c,max

 (case temperature)=95°C for the KFD 

150W  D.C. to D.C. Converter (the KFD 6-25-28W) without a heat sink, consider the following:  

The KFD DC to DC Converter (150W) operates at Io=30 Amps and T

A

=50° without a heat sink. The power 

dissipated by the unit can be determined from the difference between the input power and output power 
and the efficiency of the converter. It can be noted that the unit has a power dissipation of 35.2 watts. The 
thermal resistance that is necessary to maintain a 95°C case temperature is determined from the equa-
tions that follow:

The total thermal resistance of the unit is defined as the maximum case temperature rise divided by the 
power dissipation of the module:  

ϑ

  =  Total thermal resistance

∆Τ

c max = Maximum case temperature rise

P

D

= Power dissipated as heat

From Figure 14 the required air flow necessary to maintain a 95°C case temperature then is greater than 
500 ft./min. (2.5 m/s)

Example 2:  How to determine the case temperature for a specific operating environment. Say for exam-
ple, that only an air flow of 150 ft./min is available and it is required to determine the case temperature 

θ

Tc max

,

TA

(

)

PD

----------------------------------------------

=

θ

95

50

(

)

35.2

)

÷

1.3

°

C

W

-------

=

=

Содержание KFD 6-25-28W

Страница 1: ...or the Kepco Docu mentation Office in New York 718 461 7000 requesting the correct revision for your par ticular model and serial number 3 The contents of this manual are protected by copyright Repro...

Страница 2: ......

Страница 3: ...Output Voltage Reversal 5 12 0 Isolation 5 13 0 Parallel Operation 5 14 0 Forced Load Sharing 5 15 0 Remote Sense 6 16 0 Safety Considerations 6 17 0 Output Voltage Trim 6 18 0 Thermal Considerations...

Страница 4: ...erter Circuit Configuration for RTrim Up to Increase Voltage Setpoint 17 9 Heat Sinks for Vertical Orientation Kepco Model KFD 02 and the Kepco Model KFD 04 18 10 Heat sinks for Horizontal Orientation...

Страница 5: ...perature range of 0 to 71 C Within this range the unit will operate according to the specifications listed below provided they are not subject to stress The unit will function with degraded reliabilit...

Страница 6: ...z to 20Mhz 100 mV p p max Output Current Minimum 1 0A Output Current Maximum 30 0A 1 At less than minimum load the DC to DC converter may exceed its output ripple specification TABLE 3 DYNAMIC RESPONS...

Страница 7: ...ent 51 0 40 5 A Output Current Limit Inception 30 9 39 0 A Output Current 30 0 A Output Regulation Line Vi 36 to 72 Volts Load Io 1 0A to Iomax Temperature TA 0 C to 90 C 02 0 05 0 4 0 2 50 10 mV TABL...

Страница 8: ...e remotely controlled via a switch that the user must supply across the ON OFF terminal and the VI terminal VON OFF At logic low VON OFF 0 to 1 2 Volts the unit is ON and the maximum ION OFF when the...

Страница 9: ...rotect against a short circuit condition The forward voltage drops across the diodes do not affect the set point voltage applied to the load because of the remote sensing compensation If multiple unit...

Страница 10: ...quirements of the Safety Extra Low Voltage Standard SELV one of the following conditions must be valid for the D C input The Converter input meets all requirements of SELV or The Converter must be pro...

Страница 11: ...etween failure MTBF from falling below the specified rating The KFD Power Module is designed with temperature resis tant components such as ceramic capacitors that do not degrade during prolong exposu...

Страница 12: ...e additional air flow The following two examples illustrate how the curves can be used to determine thermal performance under various air flow and heat sink configurations Example 1 To determine the a...

Страница 13: ...f the printed wiring board 18 8 RADIATION HEAT TRANSFER Radiation is not dependent upon the air flow over the power module but on the temperature difference between the module and the surrounding envi...

Страница 14: ...Short Circuit Protection Output Overvoltage Clamp 6 6 Volts minimum High Efficiency 81 Typical Fabricated with Surface Mount Technology Compatible for printed circuit board mounting Compatible for hea...

Страница 15: ...E AND EFFICIENCY MEASUREMENTS FOR THE DC TO DC CONVERTER NOTE WHEN PLACING THE POWER MODULE INTO A PRINTED CIRCUIT BOARD SOCKET USE KELVIN CONNECTIONS AT THE POWER MODULE INPUT AND OUTPUT TERMINALS TO...

Страница 16: ...LECTED RIPPLE FOR THE SINGLE OUTPUT KFD DC TO DC CONVERTER NOTE AT THE INPUT THE REFLECTED RIPPLE IS MEASURED WITH A SIMU LATED SOURCE IMPEDANCE OF 12 H THE CAPACITOR Cs OFFSETS POSSIBLE BATTERY IMPED...

Страница 17: ...KFD 6 25 28 060801 13 FIGURE 3 MECHANICAL OUTLINE DRAWING OF THE SINGLE OUT PUT KFD DC TO DC CONVERTER...

Страница 18: ...14 KFD 62528W 060801 FIGURE 4 REMOTE ON OFF WIRING CONFIGURATION FOR THE SINGLE OUTPUT KFD DC TO DC CONVERTER...

Страница 19: ...KFD 6 25 28 060801 15 FIGURE 5 WIRING CONFIGURATION FOR REDUNDANT PARALLEL OPERATION OF THE KFD DC TO DC CONVERTER...

Страница 20: ...16 KFD 62528W 060801 FIGURE 6 CIRCUIT CONFIGURATION FOR SINGLE KFD DC TO DC CONVERTER REMOTE SENSE OPERATION...

Страница 21: ...0801 17 FIGURE 7 TOP KFD DC TO DC CONVERTER CIRCUIT CONFIGURA TION FOR RTrim Down TO DECREASE VOLTAGE SETPOINT FIGURE 8 BOTTOM KFD DC TO DC CONVERTER CIRCUIT CONFIG URATION FOR RTrim Up TO INCREASE VO...

Страница 22: ...18 KFD 62528W 060801 FIGURE 9 HEAT SINKS FOR VERTICAL ORIENTATION KEPCO MODEL KFD 02 AND THE KEPCO MODEL KFD 04...

Страница 23: ...KFD 6 25 28 060801 19 FIGURE 10 HEAT SINKS FOR HORIZONTAL ORIENTATION KEPCO MODEL KFD 01 AND THE KEPCO MODEL KFD 03...

Страница 24: ...60801 FIGURE 11 FORCED CONVECTION DERATING POWER DISSIPATION VERSUS LOCAL AMBIENT TEMPERATURE NOTE THE GRAPHS ARE PLOTTED AS A FUNCTION OF THE AIR FLOW WITHOUT THE USE OF A HEAT SINK FOR THE KFD POWER...

Страница 25: ...KFD 6 25 28 060801 21 FIGURE 12 HEAT SINK DERATING CURVES NATURAL CONVECTION FINS ORIENTED ALONG THE WIDTH...

Страница 26: ...22 KFD 62528W 060801 FIGURE 13 HEAT SINK DERATING CURVES NATURAL CONVECTION FINS ORIENTED ALONG THE LENGTH...

Страница 27: ...KFD 6 25 28 060801 23 FIGURE 14 HEAT SINK RESISTANCE CURVES FOR FINS ORIENTED ALONG VERTICAL AND HORIZONTAL DIRECTIONS...

Страница 28: ......

Отзывы: