background image

STK12C68

Document Number: 001-51027 Rev. **

Page 4 of 20

Figure 3.  AutoStore Inhibit Mode

If the power supply drops faster than 20 us/volt before Vcc
reaches V

SWITCH

, then a 2.2 ohm resistor should be connected

between V

CC

 and the system supply to avoid momentary excess

of current between V

CC

 and V

CAP

.

AutoStore Inhibit Mode

If an automatic STORE

 

on power loss is not required, then V

CC

is tied to ground and +5V is applied to V

CAP

 (

Figure 3

). This is

the AutoStore Inhibit mode, where the AutoStore function is
disabled. If the STK12C68 is operated in this configuration, refer-
ences to V

CC

 are changed to V

CAP

 throughout this data sheet.

In this mode, STORE

 

operations are triggered through software

control or the HSB pin. To enable or disable Autostore using an
I/O port pin see

 

Preventing Store

 on page 5

.

 It is not permissible

to change between these three options “on the fly”.

Hardware STORE (HSB) Operation

The STK12C68 provides the HSB pin for controlling and
acknowledging the STORE operations. The HSB pin is used to
request a hardware STORE cycle. When the HSB pin is driven
LOW, the STK12C68 conditionally initiates a STORE operation
after t

DELAY

. An actual STORE cycle only begins if a Write to the

SRAM takes place since the last STORE or RECALL cycle. The
HSB pin also acts as an open drain driver that is internally driven
LOW to indicate a busy condition, while the STORE (initiated by
any means) is in progress.

SRAM Read and Write operations, that are in progress when
HSB is driven LOW by any means, are given time to complete
before the STORE operation is initiated. After HSB goes LOW,
the STK12C68 continues SRAM operations for t

DELAY

. During

t

DELAY

, multiple SRAM Read operations take place. If a Write is

in progress when HSB is pulled LOW, it allows a time, t

DELAY

 to

complete. However, any SRAM Write cycles requested after
HSB goes LOW are inhibited until HSB returns HIGH.

During any STORE operation, regardless of how it is initiated,
the STK12C68 continues to drive the HSB pin LOW, releasing it
only when the STORE is complete. After completing the STORE
operation, the STK12C68 remains disabled until the HSB pin
returns HIGH.

If HSB is not used, it is left unconnected.

Hardware RECALL (Power Up)

During power up or after any low power condition (V

CC

  <

V

RESET

), an internal RECALL request is latched. When V

CC

once again exceeds the sense voltage of V

SWITCH

, a RECALL

cycle is automatically initiated and takes t

HRECALL

 to complete.

If the STK12C68 is in a Write

 

state at the end of power up

RECALL, the SRAM

 

data is corrupted. To help avoid this

situation, a 10 Kohm resistor is connected either between WE
and system V

CC

 or between CE and system V

CC

.

Software STORE

Data is transferred from the SRAM to the nonvolatile memory by
a software address sequence. The STK12C68 software STORE
cycle is initiated by executing sequential CE controlled Read
cycles from six specific address locations in exact order. During
the STORE cycle, an erase of the previous nonvolatile data is
first performed followed by a program of the nonvolatile
elements. When a STORE cycle is initiated, input and output are
disabled until the cycle is completed.

Because a sequence of Reads from specific addresses is used
for STORE initiation, it is important that no other Read or Write
accesses intervene in the sequence. If they intervene, the
sequence is aborted and no STORE or RECALL takes place.

To initiate the software STORE cycle, the following Read
sequence is performed:

1. Read address 0x0000, Valid READ

2. Read address 0x1555, Valid READ

3. Read address 0x0AAA, Valid READ

4. Read address 0x1FFF, Valid READ

5. Read address 0x10F0, Valid READ

6. Read address 0x0F0F, Initiate STORE cycle

The software sequence is clocked with CE controlled Reads or
OE controlled Reads. When the sixth address in the sequence
is entered, the STORE cycle commences and the chip is
disabled. It is important that Read cycles and not Write cycles
are used in the sequence. It is not necessary that OE is LOW for
a valid sequence. After the t

STORE

 cycle time is fulfilled, the

SRAM is again activated for Read and Write operation.

Software RECALL

Data is transferred from the nonvolatile memory to the SRAM by
a software address sequence. A software RECALL cycle is
initiated with a sequence of Read operations in a manner similar
to the software STORE initiation. To initiate the RECALL cycle,
the following sequence of CE controlled Read operations is
performed:

1. Read address 0x0000, Valid READ

2. Read address 0x1555, Valid READ

9FF

9

&$3

P

K

2

N

P

K

2

N

:(

+6%

9VV

)

5

V

V

D

S

\

%

[+] Feedback 

Содержание Perform STK12C68

Страница 1: ...iption The Cypress STK12C68 is a fast static RAM with a nonvolatile element in each memory cell The embedded nonvolatile elements incorporate QuantumTrap technology producing the world s most reliable nonvolatile memory The SRAM provides unlimited read and write cycles while independent nonvolatile data resides in the highly reliable QuantumTrap cell Data transfers from the SRAM to the nonvolatile...

Страница 2: ...p OE G Input Output Enable Active LOW The active LOW OE input enables the data output buffers during read cycles Deasserting OE HIGH causes the IO pins to tri state VSS Ground Ground for the Device The device is connected to ground of the system VCC Power Supply Power Supply Inputs to the Device HSB Input or Output Hardware Store Busy HSB When LOW this output indicates a Hardware Store is in progr...

Страница 3: ...ed Write Keep OE HIGH during the entire Write cycle to avoid data bus contention on common IO lines If OE is left LOW internal circuitry turns off the output buffers tHZWE after WE goes LOW AutoStore Operation The STK12C68 stores data to nvSRAM using one of three storage operations 1 Hardware store activated by HSB 2 Software store activated by an address sequence 3 AutoStore on device power down ...

Страница 4: ... unconnected Hardware RECALL Power Up During power up or after any low power condition VCC VRESET an internal RECALL request is latched When VCC once again exceeds the sense voltage of VSWITCH a RECALL cycle is automatically initiated and takes tHRECALL to complete If the STK12C68 is in a Write state at the end of power up RECALL the SRAM data is corrupted To help avoid this situation a 10 Kohm re...

Страница 5: ...low voltage condi tions When VCAP VSWITCH all externally initiated STORE operations and SRAM Writes are inhibited AutoStore can be completely disabled by tying VCC to ground and applying 5V to VCAP This is the AutoStore Inhibit mode in this mode STOREs are only initiated by explicit request using either the software sequence or the HSB pin Low Average Active Power CMOS technology provides the STK1...

Страница 6: ...nes and so on The Vcap value specified in this data sheet includes a minimum and a maximum value size The best practice is to meet this requirement and not exceed the maximum Vcap value because the higher inrush currents may reduce the reliability of the internal pass transistor Customers who want to use a larger Vcap value to make sure there is extra store charge should discuss their Vcap size se...

Страница 7: ...pendent on output loading and cycle rate Values obtained without output loads 10 mA ICC4 Average VCAP Current during AutoStore Cycle All Inputs Do Not Care VCC Max Average current for duration tSTORE 2 mA ISB1 5 VCC Standby Current Standby Cycling TTL Input Levels tRC 25 ns CE VIH tRC 35 ns CE VIH tRC 45 ns CE VIH 27 24 20 mA mA mA ISB2 5 VCC Standby Current CE VCC 0 2V All others VIN 0 2V or VCC ...

Страница 8: ...d 6 Parameter Description Test Conditions 28 SOIC 28 PDIP 300 mil 28 PDIP 600 mil 28 CDIP 28 LCC Unit ΘJA Thermal Resis tance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 46 55 45 16 55 84 46 1 95 31 C W ΘJC Thermal Resis tance Junction to Case 27 95 31 62 25 74 5 01 9 01 C W Figure 6 AC Test Loads AC Test Conditions...

Страница 9: ...Active 5 5 5 ns tHZCE 9 tEHQZ Chip Disable to Output Inactive 10 10 12 ns tLZOE 9 tGLQX Output Enable to Output Active 0 0 0 ns tHZOE 9 tGHQZ Output Disable to Output Inactive 10 10 12 ns tPU 6 tELICCH Chip Enable to Power Active 0 0 0 ns tPD 6 tEHICCL Chip Disable to Power Standby 25 35 45 ns Switching Waveforms Figure 7 SRAM Read Cycle 1 Address Controlled 7 8 Figure 8 SRAM Read Cycle 2 CE and O...

Страница 10: ...rite 0 0 0 ns tHA tWHAX tEHAX Address Hold After End of Write 0 0 0 ns tHZWE 9 10 tWLQZ Write Enable to Output Disable 10 13 14 ns tLZWE 9 tWHQX Output Active After End of Write 5 5 5 ns Switching Waveforms Figure 9 SRAM Write Cycle 1 WE Controlled 11 12 Figure 10 SRAM Write Cycle 2 CE Controlled 11 12 tWC tSCE tHA tAW tSA tPWE tSD tHD tHZWE tLZWE ADDRESS CE WE DATA IN DATA OUT DATA VALID HIGH IMP...

Страница 11: ...Level 4 0 4 5 V VRESET Low Voltage Reset Level 3 9 V tVCCRISE VCC Rise Time 150 μs tVSBL 11 Low Voltage Trigger VSWITCH to HSB Low 300 ns Switching Waveform Figure 11 AutoStore Power Up RECALL WE Notes 13 tHRECALL starts from the time VCC rises above VSWITCH 14 CE and OE low for output behavior 15 CE and OE low and WE high for output behavior 16 HSB is asserted low for 1us when VCAP drops through ...

Страница 12: ...0 ns tHACE 17 tELAX Address Hold Time 20 20 20 ns tRECALL RECALL Duration 20 20 20 μs Switching Waveform Figure 12 CE Controlled Software STORE RECALL Cycle 18 tRC tRC tSA tSCE tHACE tSTORE tRECALL DATA VALID DATA VALID 6 S S E R D D A 1 S S E R D D A HIGH IMPEDANCE ADDRESS CE OE DQ DATA Notes 17 The software sequence is clocked on the falling edge of CE without involving OE double clocking aborts...

Страница 13: ... tSTORE 9 14 tHLHZ STORE Cycle Duration 10 ms tDHSB 14 19 tRECOVER tHHQX Hardware STORE High to Inhibit Off 700 ns tPHSB tHLHX Hardware STORE Pulse Width 15 ns tHLBL Hardware STORE Low to STORE Busy 300 ns Switching Waveform Figure 13 Hardware STORE Cycle Note 19 tDHSB is only applicable after tSTORE is complete Feedback ...

Страница 14: ...s Ordering Code Package Diagram Package Type Operating Range 25 STK12C68 SF25TR 001 85058 28 pin SOIC 330 mil Commercial STK12C68 SF25 001 85058 28 pin SOIC 330 mil STK12C68 PF25 001 85014 28 pin PDIP 300 mil STK12C68 WF25 001 85017 28 pin PDIP 600 mil STK12C68 SF25ITR 001 85058 28 pin SOIC 330 mil Industrial STK12C68 SF25I 001 85058 28 pin SOIC 330 mil STK12C68 PF25I 001 85014 28 pin PDIP 300 mil...

Страница 15: ...STK12C68 SF45ITR 001 85058 28 pin SOIC 330 mil Industrial STK12C68 SF45I 001 85058 28 pin SOIC 330 mil STK12C68 PF45I 001 85014 28 pin PDIP 300 mil STK12C68 WF45I 001 85017 28 pin PDIP 600 mil STK12C68 C45I 001 51695 28 pin CDIP 300 mil STK12C68 L45I 001 51696 28 pin LCC 350 mil All parts are Pb free The above table contains Final information Contact your local Cypress sales representative for ava...

Страница 16: ...STK12C68 Document Number 001 51027 Rev Page 16 of 20 Package Diagrams Figure 14 28 Pin 330 Mil SOIC 51 85058 Figure 15 28 Pin 300 Mil PDIP 51 85014 51 85058 A 51 85014 D Feedback ...

Страница 17: ...STK12C68 Document Number 001 51027 Rev Page 17 of 20 Figure 16 28 Pin 600 Mil PDIP 51 85017 Package Diagrams continued 51 85017 B Feedback ...

Страница 18: ...STK12C68 Document Number 001 51027 Rev Page 18 of 20 Figure 17 28 Pin 300 Mil Side Braze DIL 001 51695 Package Diagrams continued 001 51695 Feedback ...

Страница 19: ...Number 001 51027 Rev Page 19 of 20 Figure 18 28 Pad 350 Mil LCC 001 51696 Package Diagrams continued 1 ALL DIMENSION ARE IN INCHES AND MILLIMETERS MIN MAX 2 JEDEC 95 OUTLINE MO 041 3 PACKAGE WEIGHT TBD 001 51696 Feedback ...

Страница 20: ...it as specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FI...

Отзывы: