background image

STK12C68

Document Number: 001-51027 Rev. **

Page 3 of 20

Device Operation

The STK12C68 nvSRAM is made up of two functional compo-
nents paired in the same physical cell. These are an SRAM
memory cell and a nonvolatile QuantumTrap cell. The SRAM
memory cell operates as a standard fast static RAM. Data in the
SRAM is transferred to the nonvolatile cell (the STORE
operation) or from the nonvolatile cell to SRAM (the RECALL
operation). This unique architecture enables the storage and
recall of all cells in parallel. During the STORE and RECALL
operations, SRAM Read and Write operations are inhibited. The
STK12C68 supports unlimited reads and writes similar to a
typical SRAM. In addition, it provides unlimited RECALL opera-
tions from the nonvolatile cells and up to one million STORE
operations.

SRAM Read

The STK12C68 performs a Read cycle whenever CE and OE are
LOW while WE and HSB are HIGH. The address specified on
pins A

0–12

 determines the 8,192 data bytes accessed. When the

Read is initiated by an address transition, the outputs are valid
after a delay of t

AA

 (Read cycle 1). If the Read is initiated by CE

or OE, the outputs are valid at t

ACE

 or at t

DOE

, whichever is later

(Read cycle 2). The data outputs repeatedly respond to address
changes within the t

AA

 access time without the need for transi-

tions on any control input pins, and remains valid until another
address change or until CE or OE is brought HIGH, or WE or
HSB is brought LOW.

SRAM Write

A Write cycle is performed whenever CE and WE are LOW and
HSB is HIGH. The address inputs must be stable prior to entering
the Write cycle and must remain stable until either CE or WE
goes HIGH at the end of the cycle. The data on the common IO
pins DQ

0–7

 are written into the memory if it has valid t

SD

, before

the end of a WE controlled Write or before the end of an CE
controlled Write. Keep OE HIGH during the entire Write cycle to
avoid data bus contention on common IO lines. If OE is left LOW,
internal circuitry turns off the output buffers t

HZWE 

after WE goes

LOW.

AutoStore Operation

The STK12C68 stores data to nvSRAM using one of three
storage operations: 

1. Hardware store activated by HSB

2. Software store activated by an address sequence 

3. AutoStore on device power down 

AutoStore operation is a unique feature of QuantumTrap
technology and is enabled by default on the STK12C68.

During normal operation, the device draws current from V

CC

 to

charge a capacitor connected to the V

CAP

 pin. This stored

charge is used by the chip to perform a single STORE operation.
If the voltage on the V

CC

 pin drops below V

SWITCH

, the part

automatically disconnects the V

CAP

 pin from V

CC

. A STORE

operation is initiated with power provided by the V

CAP

 capacitor.

Figure 2

 shows the proper connection of the storage capacitor

(V

CAP

) for automatic store operation. A charge storage capacitor

between 68 µF and 220 µF (+20%) rated at 6V should be
provided. The voltage on the V

CAP

 pin is driven to 5V by a charge

pump internal to the chip. A pull up is placed on WE to hold it
inactive during power up. 

In system power mode, both V

CC

 and V

CAP

 are connected to the

+5V power supply without the 68 

μ

F capacitor. In this mode, the

AutoStore function of the STK12C68 operates on the stored
system charge as power goes down. The user must, however,
guarantee that V

CC

 does not drop below 3.6V during the 10 ms

STORE

 

cycle. 

To reduce unnecessary nonvolatile stores, AutoStore, and
Hardware Store operations are ignored, unless at least one Write
operation has taken place since the most recent STORE or
RECALL cycle. Software initiated STORE cycles are performed
regardless of whether a Write operation has taken place. An
optional pull up resistor is shown connected to HSB

.

 The HSB

signal is monitored by the system to detect if an AutoStore cycle
is in progress. 

Figure 2.  AutoStore Mode

9FF

9

&$3

P

K
2

N

)

5

Y

P

K
2

N

:(

+6%

9VV

)

5

V

V

D

S

\

%

[+] Feedback 

Содержание Perform STK12C68

Страница 1: ...iption The Cypress STK12C68 is a fast static RAM with a nonvolatile element in each memory cell The embedded nonvolatile elements incorporate QuantumTrap technology producing the world s most reliable nonvolatile memory The SRAM provides unlimited read and write cycles while independent nonvolatile data resides in the highly reliable QuantumTrap cell Data transfers from the SRAM to the nonvolatile...

Страница 2: ...p OE G Input Output Enable Active LOW The active LOW OE input enables the data output buffers during read cycles Deasserting OE HIGH causes the IO pins to tri state VSS Ground Ground for the Device The device is connected to ground of the system VCC Power Supply Power Supply Inputs to the Device HSB Input or Output Hardware Store Busy HSB When LOW this output indicates a Hardware Store is in progr...

Страница 3: ...ed Write Keep OE HIGH during the entire Write cycle to avoid data bus contention on common IO lines If OE is left LOW internal circuitry turns off the output buffers tHZWE after WE goes LOW AutoStore Operation The STK12C68 stores data to nvSRAM using one of three storage operations 1 Hardware store activated by HSB 2 Software store activated by an address sequence 3 AutoStore on device power down ...

Страница 4: ... unconnected Hardware RECALL Power Up During power up or after any low power condition VCC VRESET an internal RECALL request is latched When VCC once again exceeds the sense voltage of VSWITCH a RECALL cycle is automatically initiated and takes tHRECALL to complete If the STK12C68 is in a Write state at the end of power up RECALL the SRAM data is corrupted To help avoid this situation a 10 Kohm re...

Страница 5: ...low voltage condi tions When VCAP VSWITCH all externally initiated STORE operations and SRAM Writes are inhibited AutoStore can be completely disabled by tying VCC to ground and applying 5V to VCAP This is the AutoStore Inhibit mode in this mode STOREs are only initiated by explicit request using either the software sequence or the HSB pin Low Average Active Power CMOS technology provides the STK1...

Страница 6: ...nes and so on The Vcap value specified in this data sheet includes a minimum and a maximum value size The best practice is to meet this requirement and not exceed the maximum Vcap value because the higher inrush currents may reduce the reliability of the internal pass transistor Customers who want to use a larger Vcap value to make sure there is extra store charge should discuss their Vcap size se...

Страница 7: ...pendent on output loading and cycle rate Values obtained without output loads 10 mA ICC4 Average VCAP Current during AutoStore Cycle All Inputs Do Not Care VCC Max Average current for duration tSTORE 2 mA ISB1 5 VCC Standby Current Standby Cycling TTL Input Levels tRC 25 ns CE VIH tRC 35 ns CE VIH tRC 45 ns CE VIH 27 24 20 mA mA mA ISB2 5 VCC Standby Current CE VCC 0 2V All others VIN 0 2V or VCC ...

Страница 8: ...d 6 Parameter Description Test Conditions 28 SOIC 28 PDIP 300 mil 28 PDIP 600 mil 28 CDIP 28 LCC Unit ΘJA Thermal Resis tance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 46 55 45 16 55 84 46 1 95 31 C W ΘJC Thermal Resis tance Junction to Case 27 95 31 62 25 74 5 01 9 01 C W Figure 6 AC Test Loads AC Test Conditions...

Страница 9: ...Active 5 5 5 ns tHZCE 9 tEHQZ Chip Disable to Output Inactive 10 10 12 ns tLZOE 9 tGLQX Output Enable to Output Active 0 0 0 ns tHZOE 9 tGHQZ Output Disable to Output Inactive 10 10 12 ns tPU 6 tELICCH Chip Enable to Power Active 0 0 0 ns tPD 6 tEHICCL Chip Disable to Power Standby 25 35 45 ns Switching Waveforms Figure 7 SRAM Read Cycle 1 Address Controlled 7 8 Figure 8 SRAM Read Cycle 2 CE and O...

Страница 10: ...rite 0 0 0 ns tHA tWHAX tEHAX Address Hold After End of Write 0 0 0 ns tHZWE 9 10 tWLQZ Write Enable to Output Disable 10 13 14 ns tLZWE 9 tWHQX Output Active After End of Write 5 5 5 ns Switching Waveforms Figure 9 SRAM Write Cycle 1 WE Controlled 11 12 Figure 10 SRAM Write Cycle 2 CE Controlled 11 12 tWC tSCE tHA tAW tSA tPWE tSD tHD tHZWE tLZWE ADDRESS CE WE DATA IN DATA OUT DATA VALID HIGH IMP...

Страница 11: ...Level 4 0 4 5 V VRESET Low Voltage Reset Level 3 9 V tVCCRISE VCC Rise Time 150 μs tVSBL 11 Low Voltage Trigger VSWITCH to HSB Low 300 ns Switching Waveform Figure 11 AutoStore Power Up RECALL WE Notes 13 tHRECALL starts from the time VCC rises above VSWITCH 14 CE and OE low for output behavior 15 CE and OE low and WE high for output behavior 16 HSB is asserted low for 1us when VCAP drops through ...

Страница 12: ...0 ns tHACE 17 tELAX Address Hold Time 20 20 20 ns tRECALL RECALL Duration 20 20 20 μs Switching Waveform Figure 12 CE Controlled Software STORE RECALL Cycle 18 tRC tRC tSA tSCE tHACE tSTORE tRECALL DATA VALID DATA VALID 6 S S E R D D A 1 S S E R D D A HIGH IMPEDANCE ADDRESS CE OE DQ DATA Notes 17 The software sequence is clocked on the falling edge of CE without involving OE double clocking aborts...

Страница 13: ... tSTORE 9 14 tHLHZ STORE Cycle Duration 10 ms tDHSB 14 19 tRECOVER tHHQX Hardware STORE High to Inhibit Off 700 ns tPHSB tHLHX Hardware STORE Pulse Width 15 ns tHLBL Hardware STORE Low to STORE Busy 300 ns Switching Waveform Figure 13 Hardware STORE Cycle Note 19 tDHSB is only applicable after tSTORE is complete Feedback ...

Страница 14: ...s Ordering Code Package Diagram Package Type Operating Range 25 STK12C68 SF25TR 001 85058 28 pin SOIC 330 mil Commercial STK12C68 SF25 001 85058 28 pin SOIC 330 mil STK12C68 PF25 001 85014 28 pin PDIP 300 mil STK12C68 WF25 001 85017 28 pin PDIP 600 mil STK12C68 SF25ITR 001 85058 28 pin SOIC 330 mil Industrial STK12C68 SF25I 001 85058 28 pin SOIC 330 mil STK12C68 PF25I 001 85014 28 pin PDIP 300 mil...

Страница 15: ...STK12C68 SF45ITR 001 85058 28 pin SOIC 330 mil Industrial STK12C68 SF45I 001 85058 28 pin SOIC 330 mil STK12C68 PF45I 001 85014 28 pin PDIP 300 mil STK12C68 WF45I 001 85017 28 pin PDIP 600 mil STK12C68 C45I 001 51695 28 pin CDIP 300 mil STK12C68 L45I 001 51696 28 pin LCC 350 mil All parts are Pb free The above table contains Final information Contact your local Cypress sales representative for ava...

Страница 16: ...STK12C68 Document Number 001 51027 Rev Page 16 of 20 Package Diagrams Figure 14 28 Pin 330 Mil SOIC 51 85058 Figure 15 28 Pin 300 Mil PDIP 51 85014 51 85058 A 51 85014 D Feedback ...

Страница 17: ...STK12C68 Document Number 001 51027 Rev Page 17 of 20 Figure 16 28 Pin 600 Mil PDIP 51 85017 Package Diagrams continued 51 85017 B Feedback ...

Страница 18: ...STK12C68 Document Number 001 51027 Rev Page 18 of 20 Figure 17 28 Pin 300 Mil Side Braze DIL 001 51695 Package Diagrams continued 001 51695 Feedback ...

Страница 19: ...Number 001 51027 Rev Page 19 of 20 Figure 18 28 Pad 350 Mil LCC 001 51696 Package Diagrams continued 1 ALL DIMENSION ARE IN INCHES AND MILLIMETERS MIN MAX 2 JEDEC 95 OUTLINE MO 041 3 PACKAGE WEIGHT TBD 001 51696 Feedback ...

Страница 20: ...it as specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FI...

Отзывы: