background image

CY7C1510KV18, CY7C1525KV18
CY7C1512KV18, CY7C1514KV18

Document Number: 001-00436 Rev. *E

Page 8 of 30

Functional Overview

The CY7C1510KV18, CY7C1525KV18, CY7C1512KV18, and

CY7C1514KV18 are synchronous pipelined Burst SRAMs with a

read port and a write port. The read port is dedicated to read

operations and the write port is dedicated to write operations.

Data flows into the SRAM through the write port and flows out

through the read port. These devices multiplex the address

inputs to minimize the number of address pins required. By

having separate read and write ports, the QDR-II completely

eliminates the need to turn around the data bus and avoids any

possible data contention, thereby simplifying system design.

Each access consists of two 8-bit data transfers in the case of

CY7C1510KV18, two 9-bit data transfers in the case of

CY7C1525KV18, two 18-bit data transfers in the case of

CY7C1512KV18, and two 36-bit data transfers in the case of

CY7C1514KV18 in one clock cycle. 
This device operates with a read latency of one and half cycles

when DOFF pin is tied HIGH. When DOFF pin is set LOW or

connected to V

SS

 then the device behaves in QDR-I mode with

a read latency of one clock cycle. 
Accesses for both ports are initiated on the rising edge of the

positive input clock (K). All synchronous input timing is refer-

enced from the rising edge of the input clocks (K and K) and all

output timing is referenced to the output clocks (C and C, or K

and K when in single clock mode).
All synchronous data inputs (D

[x:0]

) pass through input registers

controlled by the input clocks (K and K). All synchronous data

outputs (Q

[x:0]

) pass through output registers controlled by the

rising edge of the output clocks (C and C, or K and K when in

single clock mode). 
All synchronous control (RPS, WPS, BWS

[x:0]

) inputs pass

through input registers controlled by the rising edge of the input

clocks (K and K).
CY7C1512KV18 is described in the following sections. The

same basic descriptions apply to CY7C1510KV18,

CY7C1525KV18, and CY7C1514KV18. 

Read Operations

The CY7C1512KV18 is organized internally as two arrays of 2M

x 18. Accesses are completed in a burst of two sequential 18-bit

data words. Read operations are initiated by asserting RPS

active at the rising edge of the positive input clock (K). The

address is latched on the rising edge of the K clock. The address

presented to the address inputs is stored in the read address

register. Following the next K clock rise, the corresponding

lowest order 18-bit word of data is driven onto the Q

[17:0]

 using

C as the output timing reference. On the subsequent rising edge

of C, the next 18-bit data word is driven onto the Q

[17:0]

. The

requested data is valid 0.45 ns from the rising edge of the output

clock (C and C or K and K when in single clock mode).
Synchronous internal circuitry automatically tristates the outputs

following the next rising edge of the output clocks (C/C). This

enables for a seamless transition between devices without the

insertion of wait states in a depth expanded memory. 

Write Operations

Write operations are initiated by asserting WPS active at the

rising edge of the positive input clock (K). On the same K clock

rise the data presented to D

[17:0]

 is latched and stored into the

lower 18-bit write data register, provided BWS

[1:0]

 are both

asserted active. On the subsequent rising edge of the negative

input clock (K), the address is latched and the information

presented to D

[17:0]

 is also stored into the write data register,

provided BWS

[1:0]

 are both asserted active. The 36 bits of data

are then written into the memory array at the specified location. 
When deselected, the write port ignores all inputs after the

pending write operations are completed. 

Byte Write Operations

Byte write operations are supported by the CY7C1512KV18. A

write operation is initiated as described in the 

Write Operations

section. The bytes that are written are determined by BWS

0

 and

BWS

1

, which are sampled with each set of 18-bit data words.

Asserting the appropriate Byte Write Select input during the data

portion of a write latches the data being presented and writes it

into the device. Deasserting the Byte write select input during the

data portion of a write enables the data stored in the device for

that byte to remain unaltered. This feature is used to simplify

read, modify, or write operations to a byte write operation.

Single Clock Mode

The CY7C1510KV18 is used with a single clock that controls

both the input and output registers. In this mode the device

recognizes only a single pair of input clocks (K and K) that control

both the input and output registers. This operation is identical to

the operation if the device had zero skew between the K/K and

C/C clocks. All timing parameters remain the same in this mode.

To use this mode of operation, the user must tie C and C HIGH

at power on. This function is a strap option and not alterable

during device operation.

Concurrent Transactions

The read and write ports on the CY7C1512KV18 operate

completely independently of one another. As each port latches

the address inputs on different clock edges, the user can read or

write to any location, regardless of the transaction on the other

port. The user can start reads and writes in the same clock cycle.

If the ports access the same location at the same time, the SRAM

delivers the most recent information associated with the

specified address location. This includes forwarding data from a

write cycle that was initiated on the previous K clock rise.

Depth Expansion

The CY7C1512KV18 has a port select input for each port. This

enables for easy depth expansion. Both port selects are sampled

on the rising edge of the positive input clock only (K). Each port

select input can deselect the specified port. Deselecting a port

does not affect the other port. All pending transactions (read and

write) are completed before the device is deselected. 

Programmable Impedance

An external resistor, RQ, must be connected between the ZQ pin

on the SRAM and V

SS 

to enable the SRAM to adjust its output

driver impedance. The value of RQ must be 5X the value of the

intended line impedance driven by the SRAM. The allowable

range of RQ to guarantee impedance matching with a tolerance

of ±15% is between 175

Ω

 and 350

Ω

with V

DDQ

= 1.5V.  The

output impedance is adjusted every 1024 cycles upon power up

to account for drifts in supply voltage and temperature.

[+] Feedback 

Содержание CY7C1510KV18

Страница 1: ...ous Pipelined SRAMs equipped with QDR II architecture QDR II architecture consists of two separate ports the read port and the write port to access the memory array The read port has dedicated data ou...

Страница 2: ...Read Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 8 22 16 8 NWS 1 0 VREF Write Add Decode Write Reg 8 A 21 0 22 CQ CQ DOFF Q 7 0 8 8 Write Reg C C 4M x 8 Array 8 4M x 9 Array CLK A 21...

Страница 3: ...a Reg RPS WPS Control Logic Address Register Reg Reg Reg 18 21 36 18 BWS 1 0 VREF Write Add Decode Write Reg 18 A 20 0 21 CQ CQ DOFF Q 17 0 18 18 Write Reg C C 2M x 18 Array 18 1M x 36 Array CLK A 19...

Страница 4: ...Q6 D6 VDDQ VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1525KV18 8M x 9 1 2 3 4...

Страница 5: ...A A NC D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1514KV18 2M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M A WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A A...

Страница 6: ...8M x 8 2 arrays each of 4M x 8 for CY7C1510KV18 8M x 9 2 arrays each of 4M x 9 for CY7C1525KV18 4M x 18 2 arrays each of 2M x 18 for CY7C1512KV18 and 2M x 36 2 arrays each of 1M x 36 for CY7C1514KV18...

Страница 7: ...s pin cannot be connected directly to GND or left unconnected DOFF Input PLL Turn Off Active LOW Connecting this pin to ground turns off the PLL inside the device The timing in the operation with the...

Страница 8: ...at the rising edge of the positive input clock K On the same K clock rise the data presented to D 17 0 is latched and stored into the lower 18 bit write data register provided BWS 1 0 are both assert...

Страница 9: ...ck frequency During power up when the DOFF is tied HIGH the PLL is locked after 20 s of stable clock The PLL can also be reset by slowing or stopping the input clocks K and K for a minimum of 30 ns Ho...

Страница 10: ...te D 8 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1510KV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unalt...

Страница 11: ...nto the device D 35 9 remains unaltered L H H H L H During the data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the dat...

Страница 12: ...falling edge of TCK Instruction Register Three bit instructions are serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP...

Страница 13: ...egister After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an...

Страница 14: ...ontroller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR S...

Страница 15: ...t HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 I...

Страница 16: ...tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions...

Страница 17: ...9 Instruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and...

Страница 18: ...L 7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P...

Страница 19: ...and clock K K for 20 s to lock the PLL PLL Constraints PLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The PLL functions at frequencies d...

Страница 20: ...put HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW...

Страница 21: ...tic 333 MHz x8 290 mA x9 290 x18 290 x36 290 300 MHz x8 280 mA x9 280 x18 280 x36 280 250 MHz x8 270 mA x9 270 x18 270 x36 270 200 MHz x8 250 mA x9 250 x18 250 x36 250 167 MHz x8 250 mA x9 250 x18 250...

Страница 22: ...t Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 13 7 C W JC Thermal Resistance Junction to Case 3 73 C W Figure 4 AC Test Lo...

Страница 23: ...to K Clock Rise 0 4 0 4 0 5 0 6 0 7 ns tSC tIVKH Control Setup to K Clock Rise RPS WPS 0 4 0 4 0 5 0 6 0 7 ns tSCDDR tIVKH DDR Control Setup to Clock K K Rise BWS0 BWS1 BWS2 BWS3 0 3 0 3 0 35 0 4 0 5...

Страница 24: ...Clock C C Rise to High Z Active to High Z 24 25 0 45 0 45 0 45 0 45 0 50 ns tCLZ tCHQX1 Clock C C Rise to Low Z 24 25 0 45 0 45 0 45 0 45 0 50 ns PLL Timing tKC Var tKC Var Clock Phase Jitter 0 20 0 2...

Страница 25: ...0 D51 D61 D31 D11 D10 D60 Q C C DON T CARE UNDEFINED t CQ CQ tKHCH tCO tKHCH tCLZ CHZ tKH tKL Q00 Q01 Q20 tKHKH tCYC Q21 Q40 Q41 tCQD tDOH tCCQO tCQOH tCCQO tCQOH tCQDOH tCQH tCQHCQH Notes 26 Q00 refe...

Страница 26: ...13 x 15 x 1 4 mm Commercial CY7C1525KV18 333BZC CY7C1512KV18 333BZC CY7C1514KV18 333BZC CY7C1510KV18 333BZXC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Pb Free CY7C1525KV18 333BZXC...

Страница 27: ...ay 13 x 15 x 1 4 mm Pb Free CY7C1525KV18 250BZXI CY7C1512KV18 250BZXI CY7C1514KV18 250BZXI 200 CY7C1510KV18 200BZC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Commercial CY7C1525KV18...

Страница 28: ...rray 13 x 15 x 1 4 mm Pb Free CY7C1525KV18 167BZXC CY7C1512KV18 167BZXC CY7C1514KV18 167BZXC CY7C1510KV18 167BZI 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1525KV18 1...

Страница 29: ...A B 0 05 M C B A 0 15 4X 0 35 0 06 SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M...

Страница 30: ...RCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make changes without further notice to the materials described herein Cypress does not assume any liability arising out...

Отзывы: