background image

CY7C1510KV18, CY7C1525KV18
CY7C1512KV18, CY7C1514KV18

Document Number: 001-00436 Rev. *E

Page 13 of 30

IDCODE

The IDCODE instruction loads a vendor-specific, 32-bit code into

the instruction register. It also places the instruction register

between the TDI and TDO pins and shifts the IDCODE out of the

device when the TAP controller enters the Shift-DR state. The

IDCODE instruction is loaded into the instruction register at

power up or whenever the TAP controller is supplied a

Test-Logic-Reset state.

SAMPLE Z

The SAMPLE Z instruction connects the boundary scan register

between the TDI and TDO pins when the TAP controller is in a

Shift-DR state. The SAMPLE Z command puts the output bus

into a High-Z state until the next command is supplied during the

Update IR state.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When

the SAMPLE/PRELOAD instructions are loaded into the

instruction register and the TAP controller is in the Capture-DR

state, a snapshot of data on the input and output pins is captured

in the boundary scan register.
The TAP controller clock can only operate at a frequency up to

20 MHz, while the SRAM clock operates more than an order of

magnitude faster. Because there is a large difference in the clock

frequencies, it is possible that during the Capture-DR state, an

input or output undergoes a transition. The TAP may then try to

capture a signal while in transition (metastable state). This does

not harm the device, but there is no guarantee as to the value

that is captured. Repeatable results may not be possible.
To guarantee that the boundary scan register captures the

correct value of a signal, the SRAM signal must be stabilized

long enough to meet the TAP controller's capture setup plus hold

times (t

CS

 and t

CH

). The SRAM clock input might not be captured

correctly if there is no way in a design to stop (or slow) the clock

during a SAMPLE/PRELOAD instruction. If this is an issue, it is

still possible to capture all other signals and simply ignore the

value of the CK and CK captured in the boundary scan register.
After the data is captured, it is possible to shift out the data by

putting the TAP into the Shift-DR state. This places the boundary

scan register between the TDI and TDO pins.
PRELOAD places an initial data pattern at the latched parallel

outputs of the boundary scan register cells before the selection

of another boundary scan test operation.
The shifting of data for the SAMPLE and PRELOAD phases can

occur concurrently when required, that is, while the data

captured is shifted out, the preloaded data can be shifted in.

BYPASS

When the BYPASS instruction is loaded in the instruction register

and the TAP is placed in a Shift-DR state, the bypass register is

placed between the TDI and TDO pins. The advantage of the

BYPASS instruction is that it shortens the boundary scan path

when multiple devices are connected together on a board.

EXTEST

The EXTEST instruction drives the preloaded data out through

the system output pins. This instruction also connects the

boundary scan register for serial access between the TDI and

TDO in the Shift-DR controller state.

EXTEST OUTPUT BUS TRISTATE

IEEE Standard 1149.1 mandates that the TAP controller be able

to put the output bus into a tristate mode.
The boundary scan register has a special bit located at bit #108.

When this scan cell, called the “extest output bus tristate,” is

latched into the preload register during the Update-DR state in

the TAP controller, it directly controls the state of the output

(Q-bus) pins, when the EXTEST is entered as the current

instruction. When HIGH, it enables the output buffers to drive the

output bus. When LOW, this bit places the output bus into a

High-Z condition.
This bit is set by entering the SAMPLE/PRELOAD or EXTEST

command, and then shifting the desired bit into that cell, during

the Shift-DR state. During Update-DR, the value loaded into that

shift-register cell latches into the preload register. When the

EXTEST instruction is entered, this bit directly controls the output

Q-bus pins. Note that this bit is pre-set LOW to enable the output

when the device is powered up, and also when the TAP controller

is in the Test-Logic-Reset state.

Reserved

These instructions are not implemented but are reserved for

future use. Do not use these instructions.

[+] Feedback 

Содержание CY7C1510KV18

Страница 1: ...ous Pipelined SRAMs equipped with QDR II architecture QDR II architecture consists of two separate ports the read port and the write port to access the memory array The read port has dedicated data ou...

Страница 2: ...Read Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 8 22 16 8 NWS 1 0 VREF Write Add Decode Write Reg 8 A 21 0 22 CQ CQ DOFF Q 7 0 8 8 Write Reg C C 4M x 8 Array 8 4M x 9 Array CLK A 21...

Страница 3: ...a Reg RPS WPS Control Logic Address Register Reg Reg Reg 18 21 36 18 BWS 1 0 VREF Write Add Decode Write Reg 18 A 20 0 21 CQ CQ DOFF Q 17 0 18 18 Write Reg C C 2M x 18 Array 18 1M x 36 Array CLK A 19...

Страница 4: ...Q6 D6 VDDQ VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1525KV18 8M x 9 1 2 3 4...

Страница 5: ...A A NC D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1514KV18 2M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M A WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A A...

Страница 6: ...8M x 8 2 arrays each of 4M x 8 for CY7C1510KV18 8M x 9 2 arrays each of 4M x 9 for CY7C1525KV18 4M x 18 2 arrays each of 2M x 18 for CY7C1512KV18 and 2M x 36 2 arrays each of 1M x 36 for CY7C1514KV18...

Страница 7: ...s pin cannot be connected directly to GND or left unconnected DOFF Input PLL Turn Off Active LOW Connecting this pin to ground turns off the PLL inside the device The timing in the operation with the...

Страница 8: ...at the rising edge of the positive input clock K On the same K clock rise the data presented to D 17 0 is latched and stored into the lower 18 bit write data register provided BWS 1 0 are both assert...

Страница 9: ...ck frequency During power up when the DOFF is tied HIGH the PLL is locked after 20 s of stable clock The PLL can also be reset by slowing or stopping the input clocks K and K for a minimum of 30 ns Ho...

Страница 10: ...te D 8 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1510KV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unalt...

Страница 11: ...nto the device D 35 9 remains unaltered L H H H L H During the data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the dat...

Страница 12: ...falling edge of TCK Instruction Register Three bit instructions are serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP...

Страница 13: ...egister After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an...

Страница 14: ...ontroller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR S...

Страница 15: ...t HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 I...

Страница 16: ...tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions...

Страница 17: ...9 Instruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and...

Страница 18: ...L 7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P...

Страница 19: ...and clock K K for 20 s to lock the PLL PLL Constraints PLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The PLL functions at frequencies d...

Страница 20: ...put HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW...

Страница 21: ...tic 333 MHz x8 290 mA x9 290 x18 290 x36 290 300 MHz x8 280 mA x9 280 x18 280 x36 280 250 MHz x8 270 mA x9 270 x18 270 x36 270 200 MHz x8 250 mA x9 250 x18 250 x36 250 167 MHz x8 250 mA x9 250 x18 250...

Страница 22: ...t Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 13 7 C W JC Thermal Resistance Junction to Case 3 73 C W Figure 4 AC Test Lo...

Страница 23: ...to K Clock Rise 0 4 0 4 0 5 0 6 0 7 ns tSC tIVKH Control Setup to K Clock Rise RPS WPS 0 4 0 4 0 5 0 6 0 7 ns tSCDDR tIVKH DDR Control Setup to Clock K K Rise BWS0 BWS1 BWS2 BWS3 0 3 0 3 0 35 0 4 0 5...

Страница 24: ...Clock C C Rise to High Z Active to High Z 24 25 0 45 0 45 0 45 0 45 0 50 ns tCLZ tCHQX1 Clock C C Rise to Low Z 24 25 0 45 0 45 0 45 0 45 0 50 ns PLL Timing tKC Var tKC Var Clock Phase Jitter 0 20 0 2...

Страница 25: ...0 D51 D61 D31 D11 D10 D60 Q C C DON T CARE UNDEFINED t CQ CQ tKHCH tCO tKHCH tCLZ CHZ tKH tKL Q00 Q01 Q20 tKHKH tCYC Q21 Q40 Q41 tCQD tDOH tCCQO tCQOH tCCQO tCQOH tCQDOH tCQH tCQHCQH Notes 26 Q00 refe...

Страница 26: ...13 x 15 x 1 4 mm Commercial CY7C1525KV18 333BZC CY7C1512KV18 333BZC CY7C1514KV18 333BZC CY7C1510KV18 333BZXC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Pb Free CY7C1525KV18 333BZXC...

Страница 27: ...ay 13 x 15 x 1 4 mm Pb Free CY7C1525KV18 250BZXI CY7C1512KV18 250BZXI CY7C1514KV18 250BZXI 200 CY7C1510KV18 200BZC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Commercial CY7C1525KV18...

Страница 28: ...rray 13 x 15 x 1 4 mm Pb Free CY7C1525KV18 167BZXC CY7C1512KV18 167BZXC CY7C1514KV18 167BZXC CY7C1510KV18 167BZI 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1525KV18 1...

Страница 29: ...A B 0 05 M C B A 0 15 4X 0 35 0 06 SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M...

Страница 30: ...RCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make changes without further notice to the materials described herein Cypress does not assume any liability arising out...

Отзывы: