background image

CY7C1416AV18, CY7C1427AV18
CY7C1418AV18, CY7C1420AV18

Document Number: 38-05616 Rev. *F

Page 13 of 31

IDCODE

The IDCODE instruction loads a vendor-specific, 32-bit code into
the instruction register. It also places the instruction register
between the TDI and TDO pins and shifts the IDCODE out of the
device when the TAP controller enters the Shift-DR state. The
IDCODE instruction is loaded into the instruction register at
power up or whenever the TAP controller is supplied a
Test-Logic-Reset state.

SAMPLE Z

The SAMPLE Z instruction connects the boundary scan register
between the TDI and TDO pins when the TAP controller is in a
Shift-DR state. The SAMPLE Z command puts the output bus
into a High-Z state until the next command is supplied during the
Update IR state.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the input and output pins is captured
in the boundary scan register.

The user must be aware that the TAP controller clock can only
operate at a frequency up to 20 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because there
is a large difference in the clock frequencies, it is possible that
during the Capture-DR state, an input or output undergoes a
transition. The TAP may then try to capture a signal while in
transition (metastable state). This does not harm the device, but
there is no guarantee as to the value that is captured.
Repeatable results may not be possible.

To guarantee that the boundary scan register captures the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller's capture setup plus hold
times (t

CS

 and t

CH

). The SRAM clock input might not be captured

correctly if there is no way in a design to stop (or slow) the clock
during a SAMPLE/PRELOAD instruction. If this is an issue, it is
still possible to capture all other signals and simply ignore the
value of the CK and CK captured in the boundary scan register.

After the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the boundary
scan register between the TDI and TDO pins.

PRELOAD places an initial data pattern at the latched parallel
outputs of the boundary scan register cells before the selection
of another boundary scan test operation.

The shifting of data for the SAMPLE and PRELOAD phases can
occur concurrently when required, that is, while the data
captured is shifted out, the preloaded data can be shifted in.

BYPASS

When the BYPASS instruction is loaded in the instruction register
and the TAP is placed in a Shift-DR state, the bypass register is
placed between the TDI and TDO pins. The advantage of the
BYPASS instruction is that it shortens the boundary scan path
when multiple devices are connected together on a board.

EXTEST

The EXTEST instruction drives the preloaded data out through
the system output pins. This instruction also connects the
boundary scan register for serial access between the TDI and
TDO in the Shift-DR controller state.

EXTEST OUTPUT BUS TRI-STATE

IEEE Standard 1149.1 mandates that the TAP controller be able
to put the output bus into a tri-state mode.

The boundary scan register has a special bit located at bit #108.
When this scan cell, called the “extest output bus tri-state,” is
latched into the preload register during the Update-DR state in
the TAP controller, it directly controls the state of the output
(Q-bus) pins, when the EXTEST is entered as the current
instruction. When HIGH, it enables the output buffers to drive the
output bus. When LOW, this bit places the output bus into a
High-Z condition.

This bit can be set by entering the SAMPLE/PRELOAD or
EXTEST command, and then shifting the desired bit into that cell,
during the Shift-DR state. During Update-DR, the value loaded
into that shift-register cell latches into the preload register. When
the EXTEST instruction is entered, this bit directly controls the
output Q-bus pins. Note that this bit is preset HIGH to enable the
output when the device is powered up, and also when the TAP
controller is in the Test-Logic-Reset state.

Reserved

These instructions are not implemented but are reserved for
future use. Do not use these instructions.

[+] Feedback 

Содержание CY7C1416AV18

Страница 1: ...es of the input K clock Write data is registered on the rising edges of both K and K Read data is driven on the rising edges of C and C if provided or on the rising edge of K and K if C C are not prov...

Страница 2: ...egister Read Add Decode Read Data Reg R W Output Logic Reg Reg Reg 8 16 8 NWS 1 0 VREF Write Add Decode 8 21 C C 8 LD Control R W DOFF 2M x 8 Array 2M x 8 Array 8 DQ 7 0 8 CQ CQ Write Reg Write Reg CL...

Страница 3: ...R W Output Logic Reg Reg Reg 18 36 18 BWS 1 0 VREF Write Add Decode 18 21 C C 18 LD Control Burst Logic A0 A 20 1 R W DOFF 1M x 18 Array 1M x 18 Array 20 18 DQ 17 0 18 CQ CQ Write Reg Write Reg CLK A...

Страница 4: ...DDQ VSS VSS VSS VDDQ NC NC DQ0 M NC NC NC VSS VSS VSS VSS VSS NC NC NC N NC NC NC VSS A A A VSS NC NC NC P NC NC DQ7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1427AV18 4M x 9 1 2 3 4 5 6...

Страница 5: ...A A NC NC DQ0 R TDO TCK A A A C A A A TMS TDI CY7C1420AV18 1M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 144M A R W BWS2 K BWS1 LD A NC 72M CQ B NC DQ27 DQ18 A BWS3 K BWS0 A NC NC DQ8 C NC NC DQ28 VSS A A0...

Страница 6: ...A0 Input Synchronous Address Inputs These address inputs are multiplexed for both read and write operations Internally the device is organized as 4M x 8 2 arrays each of 2M x 8 for CY7C1416AV18 4M x...

Страница 7: ...ed between ZQ and ground Alternatively connect this pin directly to VDDQ which enables the minimum impedance mode This pin cannot be connected directly to GND or left unconnected DOFF Input DLL Turn O...

Страница 8: ...the address in a linear fashion On the following K clock rise the data presented to D 17 0 is latched and stored into the 18 bit write data register provided BWS 1 0 are both asserted active On the s...

Страница 9: ...to the output clock of the DDR II In the single clock mode CQ is generated with respect to K and CQ is generated with respect to K The timings for the echo clocks is shown in the AC Timing Table DLL T...

Страница 10: ...yte D 8 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1416AV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unal...

Страница 11: ...ten into the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During th...

Страница 12: ...ing edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP...

Страница 13: ...ary scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD...

Страница 14: ...ontroller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR S...

Страница 15: ...HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 In...

Страница 16: ...tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions F...

Страница 17: ...nstruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TD...

Страница 18: ...7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P...

Страница 19: ...ock K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies...

Страница 20: ...V VOH Output HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW O...

Страница 21: ...atic 300MHz x8 345 mA x9 345 x18 360 x36 400 278MHz x8 325 mA x9 330 x18 345 x36 370 250MHz x8 320 mA x9 320 x18 330 x36 350 200MHz x8 300 mA x9 300 x18 300 x36 315 167MHz x8 285 mA x9 285 x18 290 x36...

Страница 22: ...e Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 17 2 C W JC Thermal Resistance Junction to Case 3 2 C W...

Страница 23: ...up to K Clock Rise LD R W 0 4 0 4 0 5 0 6 0 7 ns tSCDDR tIVKH Double Data Rate Control Setup to Clock K K Rise BWS0 BWS1 BWS2 BWS3 0 3 0 3 0 35 0 4 0 5 ns tSD 23 tDVKH D X 0 Setup to Clock K K Rise 0...

Страница 24: ...CHQZ Clock C C Rise to High Z Active to High Z 24 25 0 45 0 45 0 45 0 45 0 50 ns tCLZ tCHQX1 Clock C C Rise to Low Z 24 25 0 4 5 0 4 5 0 4 5 0 4 5 0 5 0 ns DLL Timing tKC Var tKC Var Clock Phase Jitte...

Страница 25: ...tKH tKHKH tKL tCYC A0 D20 D21 D30 D31 Q00 Q11 Q01 Q10 A1 A2 A3 A4 Q41 tCCQO tCQOH tCCQO tCQOH tKL tCYC K K LD R W A DQ C C CQ CQ SA tKH tKHKH tCQD tCQDOH Notes 26 Q00 refers to output from address A0...

Страница 26: ...ll Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1427AV18 300BZI CY7C1418AV18 300BZI CY7C1420AV18 300BZI CY7C1416AV18 300BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm...

Страница 27: ...18 250BZXI 200 CY7C1416AV18 200BZC 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Commercial CY7C1427AV18 200BZC CY7C1418AV18 200BZC CY7C1420AV18 200BZC CY7C1416AV18 200BZXC 51 85195 16...

Страница 28: ...AV18 167BZXC CY7C1416AV18 167BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1427AV18 167BZI CY7C1418AV18 167BZI CY7C1420AV18 167BZI CY7C1416AV18 167BZXI 51 85195 165...

Страница 29: ...8AV18 CY7C1420AV18 Document Number 38 05616 Rev F Page 29 of 31 Package Diagram Figure 6 165 ball FBGA 15 x 17 x 1 4 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0...

Страница 30: ...h First Street to 198 Champion Court Added Power up sequence and Wave form on page 19 Added Footnotes 13 14 15 on page 19 Replaced Three state with Tri state Changed the description of IX from Input L...

Страница 31: ...ed above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO T...

Отзывы: